Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2013, Vol. 14 Issue (7): 573-582    DOI: 10.1631/jzus.CIDE1310
    
Speaker-independent speech emotion recognition by fusion of functional and accompanying paralanguage features
Qi-rong Mao, Xiao-lei Zhao, Zheng-wei Huang, Yong-zhao Zhan
Department of Computer Science and Communication Engineering, Jiangsu University, Zhenjiang 212013, China
Speaker-independent speech emotion recognition by fusion of functional and accompanying paralanguage features
Qi-rong Mao, Xiao-lei Zhao, Zheng-wei Huang, Yong-zhao Zhan
Department of Computer Science and Communication Engineering, Jiangsu University, Zhenjiang 212013, China
 全文: PDF 
摘要: Functional paralanguage includes considerable emotion information, and it is insensitive to speaker changes. To improve the emotion recognition accuracy under the condition of speaker-independence, a fusion method combining the functional paralanguage features with the accompanying paralanguage features is proposed for the speaker-independent speech emotion recognition. Using this method, the functional paralanguages, such as laughter, cry, and sigh, are used to assist speech emotion recognition. The contributions of our work are threefold. First, one emotional speech database including six kinds of functional paralanguage and six typical emotions were recorded by our research group. Second, the functional paralanguage is put forward to recognize the speech emotions combined with the accompanying paralanguage features. Third, a fusion algorithm based on confidences and probabilities is proposed to combine the functional paralanguage features with the accompanying paralanguage features for speech emotion recognition. We evaluate the usefulness of the functional paralanguage features and the fusion algorithm in terms of precision, recall, and F1-measurement on the emotional speech database recorded by our research group. The overall recognition accuracy achieved for six emotions is over 67% in the speaker-independent condition using the functional paralanguage features.
关键词: Speech emotion recognitionSpeaker-independentFunctional paralanguageFusion algorithmRecognition accuracy    
Abstract: Functional paralanguage includes considerable emotion information, and it is insensitive to speaker changes. To improve the emotion recognition accuracy under the condition of speaker-independence, a fusion method combining the functional paralanguage features with the accompanying paralanguage features is proposed for the speaker-independent speech emotion recognition. Using this method, the functional paralanguages, such as laughter, cry, and sigh, are used to assist speech emotion recognition. The contributions of our work are threefold. First, one emotional speech database including six kinds of functional paralanguage and six typical emotions were recorded by our research group. Second, the functional paralanguage is put forward to recognize the speech emotions combined with the accompanying paralanguage features. Third, a fusion algorithm based on confidences and probabilities is proposed to combine the functional paralanguage features with the accompanying paralanguage features for speech emotion recognition. We evaluate the usefulness of the functional paralanguage features and the fusion algorithm in terms of precision, recall, and F1-measurement on the emotional speech database recorded by our research group. The overall recognition accuracy achieved for six emotions is over 67% in the speaker-independent condition using the functional paralanguage features.
Key words: Speech emotion recognition    Speaker-independent    Functional paralanguage    Fusion algorithm    Recognition accuracy
收稿日期: 2012-12-29 出版日期: 2013-07-05
CLC:  TP391.4  
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
Qi-rong Mao
Xiao-lei Zhao
Zheng-wei Huang
Yong-zhao Zhan

引用本文:

Qi-rong Mao, Xiao-lei Zhao, Zheng-wei Huang, Yong-zhao Zhan. Speaker-independent speech emotion recognition by fusion of functional and accompanying paralanguage features. Front. Inform. Technol. Electron. Eng., 2013, 14(7): 573-582.

链接本文:

http://www.zjujournals.com/xueshu/fitee/CN/10.1631/jzus.CIDE1310        http://www.zjujournals.com/xueshu/fitee/CN/Y2013/V14/I7/573

[1] Yuan-ping Nie, Yi Han, Jiu-ming Huang, Bo Jiao, Ai-ping Li. 基于注意机制编码解码模型的答案选择方法[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 535-544.
[2] Rong-Feng Zhang , Ting Deng , Gui-Hong Wang , Jing-Lun Shi , Quan-Sheng Guan . 基于可靠特征点分配算法的鲁棒性跟踪框架[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 545-558.
[3] Yue-ting Zhuang, Fei Wu, Chun Chen, Yun-he Pan. 挑战与希望:AI2.0时代从大数据到知识[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 3-14.
[4] Le-kui Zhou, Si-liang Tang, Jun Xiao, Fei Wu, Yue-ting Zhuang. 基于众包标签数据深度学习的命名实体消歧算法[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 97-106.
[5] M. F. Kazemi, M. A. Pourmina, A. H. Mazinan. 图像水印框架的层级-方向分解分析[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(11): 1199-1217.
[6] Guang-hui Song, Xiao-gang Jin, Gen-lang Chen, Yan Nie. 基于两级层次特征学习的图像分类方法[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(9): 897-906.
[7] Jia-yin Song, Wen-long Song, Jian-ping Huang, Liang-kuan Zhu. 基于边界分析的森林冠层半球图像中心点定位与分割[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(8): 741-749.
[8] Gao-li Sang, Hu Chen, Ge Huang, Qi-jun Zhao. 基于稠密多变量标签的“连续”头部姿态估计方法[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(6): 516-526.
[9] Xi-chuan Zhou, Fang Tang, Qin Li, Sheng-dong Hu, Guo-jun Li, Yun-jian Jia, Xin-ke Li, Yu-jie Feng. 基于多维尺度拉普拉斯分析方法的全球流感疫情监测[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(5): 413-421.
[10] Chu-hua Huang, Dong-ming Lu, Chang-yu Diao. 基于多尺度轮廓插值生成准密集时变点云模型序列[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(5): 422-434.
[11] Xiao-hu Ma, Meng Yang, Zhao Zhang. 局部不相关的局部判别嵌入人脸识别算法[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(3): 212-223.
[12] Fu-xiang Lu, Jun Huang. 超越隐主题包模型:针对场景类别识别的空间金字塔匹配[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(10): 817-828.
[13] Yu Liu, Bo Zhu. 带有几何形变的变形图像配准[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(10): 829-837.
[14] Zheng-wei Huang, Wen-tao Xue, Qi-rong Mao. 基于无监督特征学习的语音情感识别方法[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(5): 358-366.
[15] Xun Liu, Yin Zhang, San-yuan Zhang, Ying Wang, Zhong-yan Liang, Xiu-zi Ye. 基于高清监控图像的工程车辆检测算法[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(5): 346-357.