Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2012, Vol. 13 Issue (1): 29-36    DOI: 10.1631/jzus.C10a0406
    
Numerical solutions of a multi-class traffic flow model on an inhomogeneous highway using a high-resolution relaxed scheme
Jian-zhong Chen, Zhong-ke Shi, Yan-mei Hu
College of Automation, Northwestern Polytechnical University, Xi'an 710072, China, College of Science, Chang'an University, Xi'an 710064, China
Numerical solutions of a multi-class traffic flow model on an inhomogeneous highway using a high-resolution relaxed scheme
Jian-zhong Chen, Zhong-ke Shi, Yan-mei Hu
College of Automation, Northwestern Polytechnical University, Xi'an 710072, China, College of Science, Chang'an University, Xi'an 710064, China
 全文: PDF 
摘要: A high-resolution relaxed scheme which requires little information of the eigenstructure is presented for the multi-class Lighthill-Whitham-Richards (LWR) model on an inhomogeneous highway. The scheme needs only an estimate of the upper boundary of the maximum of absolute eigenvalues. It is based on incorporating an improved fifth-order weighted essentially non-oscillatory (WENO) reconstruction with relaxation approximation. The scheme benefits from the simplicity of relaxed schemes in that it requires no exact or approximate Riemann solvers and no projection along characteristic directions. The effectiveness of our method is demonstrated in several numerical examples.
关键词: Relaxed schemeMulti-class modelWeighted essentially non-oscillatory (WENO) reconstruction    
Abstract: A high-resolution relaxed scheme which requires little information of the eigenstructure is presented for the multi-class Lighthill-Whitham-Richards (LWR) model on an inhomogeneous highway. The scheme needs only an estimate of the upper boundary of the maximum of absolute eigenvalues. It is based on incorporating an improved fifth-order weighted essentially non-oscillatory (WENO) reconstruction with relaxation approximation. The scheme benefits from the simplicity of relaxed schemes in that it requires no exact or approximate Riemann solvers and no projection along characteristic directions. The effectiveness of our method is demonstrated in several numerical examples.
Key words: Relaxed scheme    Multi-class model    Weighted essentially non-oscillatory (WENO) reconstruction
收稿日期: 2010-09-16 出版日期: 2011-12-29
CLC:  TP39  
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
Jian-zhong Chen
Zhong-ke Shi
Yan-mei Hu

引用本文:

Jian-zhong Chen, Zhong-ke Shi, Yan-mei Hu. Numerical solutions of a multi-class traffic flow model on an inhomogeneous highway using a high-resolution relaxed scheme. Front. Inform. Technol. Electron. Eng., 2012, 13(1): 29-36.

链接本文:

http://www.zjujournals.com/xueshu/fitee/CN/10.1631/jzus.C10a0406        http://www.zjujournals.com/xueshu/fitee/CN/Y2012/V13/I1/29

[1] Gopi Ram , Durbadal Mandal , Sakti Prasad Ghoshal , Rajib Kar . 使用猫群算法优化线性天线阵列的最佳阵因子辐射方向图:电磁仿真验证[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 570-577.
[2] Lin-bo Qiao, Bo-feng Zhang, Jin-shu Su, Xi-cheng Lu. 结构化稀疏学习综述[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 445-463.
[3] Mei-juan Jia, Hui-qiang Wang, Jun-yu Lin, Guang-sheng Feng, Hai-tao Yu. DGTM:基于动态分组的移动P2P网络信任模型[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 559-569.
[4] Yuan-ping Nie, Yi Han, Jiu-ming Huang, Bo Jiao, Ai-ping Li. 基于注意机制编码解码模型的答案选择方法[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 535-544.
[5] Rong-Feng Zhang , Ting Deng , Gui-Hong Wang , Jing-Lun Shi , Quan-Sheng Guan . 基于可靠特征点分配算法的鲁棒性跟踪框架[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 545-558.
[6] Wen-yan Xiao, Ming-wen Wang, Zhen Weng, Li-lin Zhang, Jia-li Zuo. 基于语料库的小学英语认识率及教材选词策略研究[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(3): 362-372.
[7] . 一种基于描述逻辑的体系质量需求建模与验证方法[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(3): 346-361.
[8] Ali Darvish Falehi, Ali Mosallanejad. 使用基于多目标粒子群算法多层自适应模糊推理系统晶闸管控制串联电容器补偿技术的互联多源电力系统动态稳定性增强器[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(3): 394-409.
[9] Shuo Wang, Jiao Zhang, Tao Huang, Jiang Liu, Yun-jie Liu, F. Richard Yu. 流追踪:一种软件定义网络中低开销的时延测量和路径追踪方法[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(2): 206-219.
[10] Li Weigang. 用于评估共同作者学术贡献的第一和其他合作者信用分配模式[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(2): 180-194.
[11] Dong-wei Xu, Yong-dong Wang, Li-min Jia, Yong Qin, Hong-hui Dong. 基于ARIMA和Kalman滤波的道路交通状态实时预测[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(2): 287-302.
[12] Jun-hong Zhang, Yu Liu. 应用完备集合固有时间尺度分解和混合差分进化和粒子群算法优化的最小二乘支持向量机对柴油机进行故障诊断[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(2): 272-286.
[13] Hui Chen, Bao-gang Wei, Yi-ming Li, Yong-huai Liu, Wen-hao Zhu. 一种易用的实体识别消歧系统评测框架[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(2): 195-205.
[14] Yue-ting Zhuang, Fei Wu, Chun Chen, Yun-he Pan. 挑战与希望:AI2.0时代从大数据到知识[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 3-14.
[15] Bo-hu Li, Hui-yang Qu, Ting-yu Lin, Bao-cun Hou, Xiang Zhai, Guo-qiang Shi, Jun-hua Zhou, Chao Ruan. 基于综合集成研讨厅的群体智能设计研究[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 149-152.