Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2011, Vol. 12 Issue (2): 88-95    DOI: 10.1631/jzus.C1000037
    
Centroid-based sifting for empirical mode decomposition
Hong Hong*,1, Xin-long Wang1, Zhi-yong Tao1, Shuan-ping Du2
1 Key Laboratory of Modern Acoustics and Institute of Acoustics, Nanjing University, Nanjing 210093, China 2 State Key Laboratory of Ocean Acoustics, Hangzhou Applied Acoustics Research Institute, Hangzhou 310012, China
Centroid-based sifting for empirical mode decomposition
Hong Hong*,1, Xin-long Wang1, Zhi-yong Tao1, Shuan-ping Du2
1 Key Laboratory of Modern Acoustics and Institute of Acoustics, Nanjing University, Nanjing 210093, China 2 State Key Laboratory of Ocean Acoustics, Hangzhou Applied Acoustics Research Institute, Hangzhou 310012, China
 全文: PDF(1572 KB)  
摘要: A novel sifting method based on the concept of the ‘local centroids’ of a signal is developed for empirical mode decomposition (EMD), with the aim of reducing the mode-mixing effect and decomposing those modes whose frequencies are within an octave. Instead of directly averaging the upper and lower envelopes, as suggested by the original EMD method, the proposed technique computes the local mean curve of a signal by interpolating a set of ‘local centroids’, which are integral averages over local segments between successive extrema of the signal. With the ‘centroid’-based sifting, EMD is capable of separating intrinsic modes of oscillatory components with their frequency ratio ν even up to 0.8, thus greatly mitigating the effect of mode mixing and enhancing the frequency resolving power. Inspection is also made to show that the integral property of the ‘centroid’-based sifting can make the decomposition more stable against noise interference.
关键词: SiftingEmpirical mode decomposition (EMD)Mode mixing effectFrequency resolutionLocal centroidsNoise resistance    
Abstract: A novel sifting method based on the concept of the ‘local centroids’ of a signal is developed for empirical mode decomposition (EMD), with the aim of reducing the mode-mixing effect and decomposing those modes whose frequencies are within an octave. Instead of directly averaging the upper and lower envelopes, as suggested by the original EMD method, the proposed technique computes the local mean curve of a signal by interpolating a set of ‘local centroids’, which are integral averages over local segments between successive extrema of the signal. With the ‘centroid’-based sifting, EMD is capable of separating intrinsic modes of oscillatory components with their frequency ratio ν even up to 0.8, thus greatly mitigating the effect of mode mixing and enhancing the frequency resolving power. Inspection is also made to show that the integral property of the ‘centroid’-based sifting can make the decomposition more stable against noise interference.
Key words: Sifting    Empirical mode decomposition (EMD)    Mode mixing effect    Frequency resolution    Local centroids    Noise resistance
收稿日期: 2010-02-25 出版日期: 2011-02-08
CLC:  TP391.4  
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
Hong Hong
Xin-long Wang
Zhi-yong Tao
Shuan-ping Du

引用本文:

Hong Hong, Xin-long Wang, Zhi-yong Tao, Shuan-ping Du. Centroid-based sifting for empirical mode decomposition. Front. Inform. Technol. Electron. Eng., 2011, 12(2): 88-95.

链接本文:

http://www.zjujournals.com/xueshu/fitee/CN/10.1631/jzus.C1000037        http://www.zjujournals.com/xueshu/fitee/CN/Y2011/V12/I2/88

[1] Rong-Feng Zhang , Ting Deng , Gui-Hong Wang , Jing-Lun Shi , Quan-Sheng Guan . 基于可靠特征点分配算法的鲁棒性跟踪框架[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 545-558.
[2] Yuan-ping Nie, Yi Han, Jiu-ming Huang, Bo Jiao, Ai-ping Li. 基于注意机制编码解码模型的答案选择方法[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 535-544.
[3] Yue-ting Zhuang, Fei Wu, Chun Chen, Yun-he Pan. 挑战与希望:AI2.0时代从大数据到知识[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 3-14.
[4] Le-kui Zhou, Si-liang Tang, Jun Xiao, Fei Wu, Yue-ting Zhuang. 基于众包标签数据深度学习的命名实体消歧算法[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 97-106.
[5] M. F. Kazemi, M. A. Pourmina, A. H. Mazinan. 图像水印框架的层级-方向分解分析[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(11): 1199-1217.
[6] Guang-hui Song, Xiao-gang Jin, Gen-lang Chen, Yan Nie. 基于两级层次特征学习的图像分类方法[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(9): 897-906.
[7] Jia-yin Song, Wen-long Song, Jian-ping Huang, Liang-kuan Zhu. 基于边界分析的森林冠层半球图像中心点定位与分割[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(8): 741-749.
[8] Gao-li Sang, Hu Chen, Ge Huang, Qi-jun Zhao. 基于稠密多变量标签的“连续”头部姿态估计方法[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(6): 516-526.
[9] Xi-chuan Zhou, Fang Tang, Qin Li, Sheng-dong Hu, Guo-jun Li, Yun-jian Jia, Xin-ke Li, Yu-jie Feng. 基于多维尺度拉普拉斯分析方法的全球流感疫情监测[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(5): 413-421.
[10] Chu-hua Huang, Dong-ming Lu, Chang-yu Diao. 基于多尺度轮廓插值生成准密集时变点云模型序列[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(5): 422-434.
[11] Xiao-hu Ma, Meng Yang, Zhao Zhang. 局部不相关的局部判别嵌入人脸识别算法[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(3): 212-223.
[12] Fu-xiang Lu, Jun Huang. 超越隐主题包模型:针对场景类别识别的空间金字塔匹配[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(10): 817-828.
[13] Yu Liu, Bo Zhu. 带有几何形变的变形图像配准[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(10): 829-837.
[14] Zheng-wei Huang, Wen-tao Xue, Qi-rong Mao. 基于无监督特征学习的语音情感识别方法[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(5): 358-366.
[15] Xun Liu, Yin Zhang, San-yuan Zhang, Ying Wang, Zhong-yan Liang, Xiu-zi Ye. 基于高清监控图像的工程车辆检测算法[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(5): 346-357.