Please wait a minute...
Frontiers of Information Technology & Electronic Engineering  2010, Vol. 11 Issue (11): 860-871    DOI: 10.1631/jzus.C1001005
    
Yi Shen, Jian-ping Fan
Multi-task multi-label multiple instance learning
Yi Shen, Jian-ping Fan
Department of Computer Science, University of North Carolina at Charlotte 28223, USA
 全文: PDF 
Abstract: For automatic object detection tasks, large amounts of training images are usually labeled to achieve more reliable training of the object classifiers; this is cost-expensive since it requires hiring professionals to label large-scale training images. When a large number of object classes come into view, the issue of obtaining a large enough amount of the labeled training images becomes more critical. There are three potential solutions to reduce the burden for image labeling: (1) allowing people to provide the object labels loosely at the image level rather than at the object level (e.g., loosely-tagged images without identifying the exact object locations in the images); (2) harnessing large-scale collaboratively-tagged images that are available on the Internet; and, (3) developing new machine learning algorithms that can directly leverage large-scale collaboratively- or loosely-tagged images for achieving more effective training of a large number of object classifiers. Based on these observations, a multi-task multi-label multiple instance learning (MTML-MIL) algorithm is developed in this paper by leveraging both inter-object correlations and large-scale loosely-labeled images for object classifier training. By seamlessly integrating multi-task learning, multi-label learning, and multiple instance learning, our MTML-MIL algorithm can achieve more accurate training of a large number of inter-related object classifiers (where an object network is constructed for determining the inter-related learning tasks directly in the feature space rather than in the label space). Our experimental results have shown that our MTML-MIL algorithm can achieve higher detection accuracy rates for automatic object detection.
Key words: Object network    Loosely tagged images    Multi-task learning    Multi-label learning    Multiple instance learning
收稿日期: 2010-09-14 出版日期: 2010-11-04
CLC:  TP391.4  
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
Yi Shen
Jian-ping Fan

引用本文:

Yi Shen, Jian-ping Fan. Multi-task multi-label multiple instance learning. Front. Inform. Technol. Electron. Eng., 2010, 11(11): 860-871.

链接本文:

http://www.zjujournals.com/xueshu/fitee/CN/10.1631/jzus.C1001005        http://www.zjujournals.com/xueshu/fitee/CN/Y2010/V11/I11/860

[1] Rong-Feng Zhang , Ting Deng , Gui-Hong Wang , Jing-Lun Shi , Quan-Sheng Guan . 基于可靠特征点分配算法的鲁棒性跟踪框架[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 545-558.
[2] Yuan-ping Nie, Yi Han, Jiu-ming Huang, Bo Jiao, Ai-ping Li. 基于注意机制编码解码模型的答案选择方法[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 535-544.
[3] Le-kui Zhou, Si-liang Tang, Jun Xiao, Fei Wu, Yue-ting Zhuang. 基于众包标签数据深度学习的命名实体消歧算法[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 97-106.
[4] Yue-ting Zhuang, Fei Wu, Chun Chen, Yun-he Pan. 挑战与希望:AI2.0时代从大数据到知识[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 3-14.
[5] M. F. Kazemi, M. A. Pourmina, A. H. Mazinan. 图像水印框架的层级-方向分解分析[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(11): 1199-1217.
[6] Guang-hui Song, Xiao-gang Jin, Gen-lang Chen, Yan Nie. 基于两级层次特征学习的图像分类方法[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(9): 897-906.
[7] Jia-yin Song, Wen-long Song, Jian-ping Huang, Liang-kuan Zhu. 基于边界分析的森林冠层半球图像中心点定位与分割[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(8): 741-749.
[8] Gao-li Sang, Hu Chen, Ge Huang, Qi-jun Zhao. 基于稠密多变量标签的“连续”头部姿态估计方法[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(6): 516-526.
[9] Chu-hua Huang, Dong-ming Lu, Chang-yu Diao. 基于多尺度轮廓插值生成准密集时变点云模型序列[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(5): 422-434.
[10] Xi-chuan Zhou, Fang Tang, Qin Li, Sheng-dong Hu, Guo-jun Li, Yun-jian Jia, Xin-ke Li, Yu-jie Feng. 基于多维尺度拉普拉斯分析方法的全球流感疫情监测[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(5): 413-421.
[11] Xiao-hu Ma, Meng Yang, Zhao Zhang. 局部不相关的局部判别嵌入人脸识别算法[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(3): 212-223.
[12] Fu-xiang Lu, Jun Huang. 超越隐主题包模型:针对场景类别识别的空间金字塔匹配[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(10): 817-828.
[13] Yu Liu, Bo Zhu. 带有几何形变的变形图像配准[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(10): 829-837.
[14] Zheng-wei Huang, Wen-tao Xue, Qi-rong Mao. 基于无监督特征学习的语音情感识别方法[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(5): 358-366.
[15] Xun Liu, Yin Zhang, San-yuan Zhang, Ying Wang, Zhong-yan Liang, Xiu-zi Ye. 基于高清监控图像的工程车辆检测算法[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(5): 346-357.