Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2010, Vol. 11 Issue (7): 495-503    DOI: 10.1631/jzus.C0910658
    
Multi-affine registration using local polynomial expansion
Yuan-jun Wang1,2, Gunnar Farneb?ck2, Carl-Fredrik Westin*,2
1 Digital Medical Research Center, Shanghai Medical School, Fudan University, Shanghai 200032, China 2 Lab of Mathematics in Imaging, Brigham and Women\'s Hospital, Harvard Medical School, Boston 02115, MA, USA
Multi-affine registration using local polynomial expansion
Yuan-jun Wang1,2, Gunnar Farneb?ck2, Carl-Fredrik Westin*,2
1 Digital Medical Research Center, Shanghai Medical School, Fudan University, Shanghai 200032, China 2 Lab of Mathematics in Imaging, Brigham and Women\'s Hospital, Harvard Medical School, Boston 02115, MA, USA
 全文: PDF 
摘要: In this paper, we present a non-linear (multi-affine) registration algorithm based on a local polynomial expansion model. We generalize previous work using a quadratic polynomial expansion model. Local affine models are estimated using this generalized model analytically and iteratively, and combined to a deformable registration algorithm. Experiments show that the affine parameter calculations derived from this quadratic model are more accurate than using a linear model. Experiments further indicate that the multi-affine deformable registration method can handle complex non-linear deformation fields necessary for deformable registration, and a faster convergent rate is verified from our comparison experiment.
关键词: Deformable registrationPolynomial expansionLeast squaresMulti-affineNormalized convolution    
Abstract: In this paper, we present a non-linear (multi-affine) registration algorithm based on a local polynomial expansion model. We generalize previous work using a quadratic polynomial expansion model. Local affine models are estimated using this generalized model analytically and iteratively, and combined to a deformable registration algorithm. Experiments show that the affine parameter calculations derived from this quadratic model are more accurate than using a linear model. Experiments further indicate that the multi-affine deformable registration method can handle complex non-linear deformation fields necessary for deformable registration, and a faster convergent rate is verified from our comparison experiment.
Key words: Deformable registration    Polynomial expansion    Least squares    Multi-affine    Normalized convolution
收稿日期: 2009-10-30 出版日期: 2010-07-06
CLC:  TP391.4  
基金资助: Project  supported  by  the  joint  PhD  Program  of  the  China Scholarship Council (CSC), the US National Institutes of Health
(NIH)  (Nos.   R01MH074794  and  P41RR013218),  and  the  Na-tional Natural Science Foundation of China (No.  60972102)
通讯作者: Carl-Fredrik WESTIN     E-mail: westin@bwh.harvard.edu
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
Yuan-jun Wang
Gunnar Farneb?ck
Carl-Fredrik Westin

引用本文:

Yuan-jun Wang, Gunnar Farneb?ck, Carl-Fredrik Westin. Multi-affine registration using local polynomial expansion. Front. Inform. Technol. Electron. Eng., 2010, 11(7): 495-503.

链接本文:

http://www.zjujournals.com/xueshu/fitee/CN/10.1631/jzus.C0910658        http://www.zjujournals.com/xueshu/fitee/CN/Y2010/V11/I7/495

[1] Hua-juan Huang, Shi-fei Ding, Zhong-zhi Shi. Primal least squares twin support vector regression[J]. Front. Inform. Technol. Electron. Eng., 2013, 14(9): 722-732.
[2] Shun-wai Zhang, Feng-fan Yang, Lei Tang. An LDPC coded cooperative MIMO scheme over Rayleigh fading channels with unknown channel state information[J]. Front. Inform. Technol. Electron. Eng., 2013, 14(1): 30-41.
[3] Yang-ming Guo, Cong-bao Ran, Xiao-lei Li, Jie-zhong Ma. Adaptive online prediction method based on LS-SVR and its application in an electronic system[J]. Front. Inform. Technol. Electron. Eng., 2012, 13(12): 881-890.
[4] Qing-chao Wang, Jian-zhong Zhang. Wiener model identification and nonlinear model predictive control of a pH neutralization process based on Laguerre filters and least squares support vector machines[J]. Front. Inform. Technol. Electron. Eng., 2011, 12(1): 25-35.