Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2010, Vol. 11 Issue (7): 538-543    DOI: 10.1631/jzus.C0910481
    
Multi-objective differential evolution with diversity enhancement
Bo-yang Qu, Ponnuthurai-Nagaratnam Suganthan*
School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore
Multi-objective differential evolution with diversity enhancement
Bo-yang Qu, Ponnuthurai-Nagaratnam Suganthan*
School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore
 全文: PDF 
摘要: Multi-objective differential evolution (MODE) is a powerful and efficient population-based stochastic search technique for solving multi-objective optimization problems in many scientific and engineering fields. However, premature convergence is the major drawback of MODE, especially when there are numerous local Pareto optimal solutions. To overcome this problem, we propose a MODE with a diversity enhancement (MODE-DE) mechanism to prevent the algorithm becoming trapped in a locally optimal Pareto front. The proposed algorithm combines the current population with a number of randomly generated parameter vectors to increase the diversity of the differential vectors and thereby the diversity of the newly generated offspring. The performance of the MODE-DE algorithm was evaluated on a set of 19 benchmark problem codes available from http://www3.ntu.edu.sg/home/epnsugan/. With the proposed method, the performances were either better than or equal to those of the MODE without the diversity enhancement.
关键词: Multi-objective evolutionary algorithm (MOEA)Multi-objective differential evolution (MODE)Diversity enhancement    
Abstract: Multi-objective differential evolution (MODE) is a powerful and efficient population-based stochastic search technique for solving multi-objective optimization problems in many scientific and engineering fields. However, premature convergence is the major drawback of MODE, especially when there are numerous local Pareto optimal solutions. To overcome this problem, we propose a MODE with a diversity enhancement (MODE-DE) mechanism to prevent the algorithm becoming trapped in a locally optimal Pareto front. The proposed algorithm combines the current population with a number of randomly generated parameter vectors to increase the diversity of the differential vectors and thereby the diversity of the newly generated offspring. The performance of the MODE-DE algorithm was evaluated on a set of 19 benchmark problem codes available from http://www3.ntu.edu.sg/home/epnsugan/. With the proposed method, the performances were either better than or equal to those of the MODE without the diversity enhancement.
Key words: Multi-objective evolutionary algorithm (MOEA)    Multi-objective differential evolution (MODE)    Diversity enhancement
收稿日期: 2009-08-05 出版日期: 2010-07-06
CLC:  TP18  
基金资助: Project  (No.  0521010020)  supported  by  the  A*Star  (Agency  for Science, Technology and Research), Singapore
通讯作者: Ponnuthurai-Nagaratnam SUGANTHAN     E-mail: E070088@ntu.edu.sg, epnsugan@ntu.edu.sg
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
Bo-yang Qu
Ponnuthurai-Nagaratnam Suganthan

引用本文:

Bo-yang Qu, Ponnuthurai-Nagaratnam Suganthan. Multi-objective differential evolution with diversity enhancement. Front. Inform. Technol. Electron. Eng., 2010, 11(7): 538-543.

链接本文:

http://www.zjujournals.com/xueshu/fitee/CN/10.1631/jzus.C0910481        http://www.zjujournals.com/xueshu/fitee/CN/Y2010/V11/I7/538

[1] Muhammad Asif Zahoor Raja, Iftikhar Ahmad, Imtiaz Khan, Muhammed Ibrahem Syam, Abdul Majid Wazwaz. 用于解决非线性受电弓系统的启发式神经网络计算[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 464-484.
[2] Nan-ning Zheng, Zi-yi Liu, Peng-ju Ren, Yong-qiang Ma, Shi-tao Chen, Si-yu Yu, Jian-ru Xue, Ba-dong Chen, Fei-yue Wang. 混合-增强智能:协作与认知[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(2): 153-179.
[3] Jian-ru Xue, Di Wang, Shao-yi Du, Di-xiao Cui, Yong Huang, Nan-ning Zheng. 无人车自主定位和障碍物感知的视觉主导多传感器融合方法[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 122-138.
[4] Wei Li, Wen-jun Wu, Huai-min Wang, Xue-qi Cheng, Hua-jun Chen, Zhi-hua Zhou, Rong Ding. AI2.0时代的群体智能[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 15-43.
[5] Bo-hu Li, Bao-cun Hou, Wen-tao Yu, Xiao-bing Lu, Chun-wei Yang. 人工智能在智能制造领域的应用研究[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 86-96.
[6] Hao Fang, Shao-lei Lu, Jie Chen, Wen-jie Chen. 基于面向任务的协同特征向量的联盟形成算法[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 139-148.
[7] Tao-cheng Hu, Jin-hui Yu. 基于最大间隔的贝叶斯分类器[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(10): 973-981.
[8] Jian-hua Dai, Hu Hu, Guo-jie Zheng, Qing-hua Hu, Hui-feng Han, Hong Shi. 区间值信息系统中基于信息熵的属性约简[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(9): 919-928.
[9] Jo?o Carneiro, Diogo Martinho, Goreti Marreiros, Paulo Novais. 应用于普适群体决策的智能谈判模型[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(4): 296-308.
[10] Maiquel de Brito, Lauren Thévin, Catherine Garbay, Olivier Boissier, Jomi Fred Hübner. 通过情景化人工机构(SAI)实现灵活的危机管理校准[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(4): 309-324.
[11] Izabela Nielsen, Robert Wójcik, Grzegorz Bocewicz, Zbigniew Banaszak. 模糊操作时间约束下的多模过程优化:声明式建模方法[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(4): 338-347.
[12] Yu-qing Chen, Yu-pu Diao, Jing-gang Duan, Li-yuan Cui, Jia-yi Zhang. 后胚胎期小鼠外膝体和上丘双眼分离的发育[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(10): 807-812.
[13] Zhi-qiang Feng, Cun-gen Liu, Hu Huang. 基于区间值模糊粗糙集的知识建模及相似性推理:焊接变形预报[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(8): 636-650.
[14] Ya-tao Zhang, Cheng-yu Liu, Shou-shui Wei, Chang-zhi Wei, Fei-fei Liu. 基于非线性支持向量机和遗传算法的移动ECG质量评估[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(7): 564-573.
[15] Feng-fei Zhao, Zheng Qin, Zhuo Shao, Jun Fang, Bo-yan Ren. 用于在线值函数近似的贪婪特征替换方法[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(3): 223-231.