Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2016, Vol. 17 Issue (10): 973-981    DOI: 10.1631/FITEE.1601078
    
基于最大间隔的贝叶斯分类器
Tao-cheng Hu, Jin-hui Yu
State Key Lab of CAD & CG, Zhejiang University, Hangzhou 310058, China
Max-margin based Bayesian classifier
Tao-cheng Hu, Jin-hui Yu
State Key Lab of CAD & CG, Zhejiang University, Hangzhou 310058, China
 全文: PDF 
摘要: \n 概要:多分类学习中经常需要考虑在泛化性能和计算开销间进行权衡。本文提出一个生成式概率多分类器,综合考虑了泛化性和学习/预测速率。我们首先证明了我们的分类器具有最大间隔性质,这意味着对于未来数据的预测精度几乎和训练阶段一样高。此外,我们消除了目标函数中的大量的局部变元,极大地简化了优化问题。通过凸分析和概率语义分析,我们设计了高效的在线算法,与经典情形的最大不同在于这个算法使用聚集而非平均化处理梯度。实验证明了我们的算法具有很好的泛化性能和收敛速度。
\n
关键词: 多类学习最大间隔学习在线算法    
Abstract: There is a tradeoff between generalization capability and computational overhead in multi-class learning. We propose a generative probabilistic multi-class classifier, considering both the generalization capability and the learning/prediction rate. We show that the classifier has a max-margin property. Thus, prediction on future unseen data can nearly achieve the same performance as in the training stage. In addition, local variables are eliminated, which greatly simplifies the optimization problem. By convex and probabilistic analysis, an efficient online learning algorithm is developed. The algorithm aggregates rather than averages dualities, which is different from the classical situations. Empirical results indicate that our method has a good generalization capability and coverage rate.
Key words: Multi-class learning    Max-margin learning    Online algorithm
收稿日期: 2016-03-10 出版日期: 2016-10-08
CLC:  TP181  
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
Tao-cheng Hu
Jin-hui Yu

引用本文:

Tao-cheng Hu, Jin-hui Yu. Max-margin based Bayesian classifier. Front. Inform. Technol. Electron. Eng., 2016, 17(10): 973-981.

链接本文:

http://www.zjujournals.com/xueshu/fitee/CN/10.1631/FITEE.1601078        http://www.zjujournals.com/xueshu/fitee/CN/Y2016/V17/I10/973

[1] Jian-ru Xue, Di Wang, Shao-yi Du, Di-xiao Cui, Yong Huang, Nan-ning Zheng. 无人车自主定位和障碍物感知的视觉主导多传感器融合方法[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 122-138.
[2] Izabela Nielsen, Robert Wójcik, Grzegorz Bocewicz, Zbigniew Banaszak. 模糊操作时间约束下的多模过程优化:声明式建模方法[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(4): 338-347.
[3] Jo?o Carneiro, Diogo Martinho, Goreti Marreiros, Paulo Novais. 应用于普适群体决策的智能谈判模型[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(4): 296-308.
[4] Ya-tao Zhang, Cheng-yu Liu, Shou-shui Wei, Chang-zhi Wei, Fei-fei Liu. 基于非线性支持向量机和遗传算法的移动ECG质量评估[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(7): 564-573.
[5] Feng-fei Zhao, Zheng Qin, Zhuo Shao, Jun Fang, Bo-yan Ren. 用于在线值函数近似的贪婪特征替换方法[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(3): 223-231.
[6] Hong-xia Pang, Wen-de Dong, Zhi-hai Xu, Hua-jun Feng, Qi Li, Yue-ting Chen. Novel linear search for support vector machine parameter selection[J]. Front. Inform. Technol. Electron. Eng., 2011, 12(11): 885-896.
[7] Zhi-yong Yan, Cong-fu Xu, Yun-he Pan. [J]. Frontiers of Information Technology & Electronic Engineering, 2011, 12(8): 647-657.
[8] Peng Chen, Yong-zai Lu. Extremal optimization for optimizing kernel function and its parameters in support vector regression[J]. Front. Inform. Technol. Electron. Eng., 2011, 12(4): 297-306.
[9] Zhuo-jun Jin, Hui Qian, Shen-yi Chen, Miao-liang Zhu. Convergence analysis of an incremental approach to online inverse reinforcement learning[J]. Front. Inform. Technol. Electron. Eng., 2011, 12(1): 17-24.
[10] Shen-yi Chen, Hui Qian, Jia Fan, Zhuo-jun Jin, Miao-liang Zhu. Modified reward function on abstract features in inverse reinforcement learning[J]. Front. Inform. Technol. Electron. Eng., 2010, 11(9): 718-723.