Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2014, Vol. 15 Issue (2): 147-152    DOI: 10.1631/jzus.C1300072
    
基于辅助模型和有限脉冲响应模型的双率Box-Jenkins系统随机梯度辨识算法
Jing Chen, Rui-feng Ding
School of Science, Jiangnan University, Wuxi 214122, China; School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China
Stochastic gradient algorithm for a dual-rate Box-Jenkins model based on auxiliary model and FIR model
Jing Chen, Rui-feng Ding
School of Science, Jiangnan University, Wuxi 214122, China; School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China
 全文: PDF 
摘要: 研究目的:对具有双率特性的Box-Jenkins模型提出基于辅助模型的修正随机梯度算法。将复杂的Box-Jenkins模型简化为两个有限脉冲模型,并利用辅助模型辨识出系统损失的输出数据和未知噪声向量,接着利用修正的随机梯度算法辨识出系统的参数。仿真结果验证了方法的有效性。
研究手段:利用有限脉冲响应模型将复杂的Box-Jenkins模型转化成两个有限脉冲响应模型。双率系统的输出存在丢失情况,而传统的多项式转换技术是通过多项式转换技巧转换系统模型使其适合双率情形,但这样会导致待辨识参数维数的增大。本文通过损失数据估计方法插补丢失的输出数据,使其适合单率情形。损失数据估计方法的基本思想是,通过前一时刻参数和前一时刻信息向量辨识出当前时刻损失的输出,进而利用当前时刻信息向量刷新未知参数,两者交替进行。该方法不会增加待辨识参数维数,因而辨识效果较好。
重要结论:1. 采用有限脉冲方法,将复杂的Box-Jenkins模型转化成两个简单的有限脉冲模型。2. 利用损失数据估计方法辨识出系统丢失的数据和未知的噪声向量。3. 利用辨识出的数据能计算出带有有色噪声干扰的原系统的参数。4. 不会造成待辨识参数维数增大。
关键词: 参数估计辅助模型双率系统随机梯度Box-Jenkins模型    
Abstract: Based on the work in Ding and Ding (2008), we develop a modified stochastic gradient (SG) parameter estimation algorithm for a dual-rate Box-Jenkins model by using an auxiliary model. We simplify the complex dual-rate Box-Jenkins model to two finite impulse response (FIR) models, present an auxiliary model to estimate the missing outputs and the unknown noise variables, and compute all the unknown parameters of the system with colored noises. Simulation results indicate that the proposed method is effective.
Key words: Parameter estimation    Auxiliary model    Dual-rate system    Stochastic gradient    Box-Jenkins model    FIR model
收稿日期: 2013-03-26 出版日期: 2014-01-29
CLC:  TP273  
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
Jing Chen
Rui-feng Ding

引用本文:

Jing Chen, Rui-feng Ding. Stochastic gradient algorithm for a dual-rate Box-Jenkins model based on auxiliary model and FIR model. Front. Inform. Technol. Electron. Eng., 2014, 15(2): 147-152.

链接本文:

http://www.zjujournals.com/xueshu/fitee/CN/10.1631/jzus.C1300072        http://www.zjujournals.com/xueshu/fitee/CN/Y2014/V15/I2/147

[1] Ping Yang, Chao-peng Wu, Yi-lu Guo, Hong-bo Liu, Hui Huang, Hang-zhou Wang, Shu-yue Zhan, Bang-yi Tao, Quan-quan Mu, Qiang Wang, Hong Song. 采用线性和非线性拟合方法进行指数模型参数估计[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(3): 434-444.