Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2013, Vol. 14 Issue (5): 356-373    DOI: 10.1631/jzus.C1200267
    
EDA: an enhanced dual-active algorithm for location privacy preservation in mobile P2P networks
Yan-zhe Che, Kevin Chiew, Xiao-yan Hong, Qiang Yang, Qin-ming He
College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China; School of Engineering, Tan Tao University, Duc Hoa, Long An Province, Vietnam; Department of Computer Science, University of Alabama, Tuscaloosa, AL 35487, USA; College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
EDA: an enhanced dual-active algorithm for location privacy preservation in mobile P2P networks
Yan-zhe Che, Kevin Chiew, Xiao-yan Hong, Qiang Yang, Qin-ming He
College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China; School of Engineering, Tan Tao University, Duc Hoa, Long An Province, Vietnam; Department of Computer Science, University of Alabama, Tuscaloosa, AL 35487, USA; College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF 
摘要: Various solutions have been proposed to enable mobile users to access location-based services while preserving their location privacy. Some of these solutions are based on a centralized architecture with the participation of a trustworthy third party, whereas some other approaches are based on a mobile peer-to-peer (P2P) architecture. The former approaches suffer from the scalability problem when networks grow large, while the latter have to endure either low anonymization success rates or high communication overheads. To address these issues, this paper deals with an enhanced dual-active spatial cloaking algorithm (EDA) for preserving location privacy in mobile P2P networks. The proposed EDA allows mobile users to collect and actively disseminate their location information to other users. Moreover, to deal with the challenging characteristics of mobile P2P networks, e.g., constrained network resources and user mobility, EDA enables users (1) to perform a negotiation process to minimize the number of duplicate locations to be shared so as to significantly reduce the communication overhead among users, (2) to predict user locations based on the latest available information so as to eliminate the inaccuracy problem introduced by using some out-of-date locations, and (3) to use a latest-record-highest-priority (LRHP) strategy to reduce the probability of broadcasting fewer useful locations. Extensive simulations are conducted for a range of P2P network scenarios to evaluate the performance of EDA in comparison with the existing solutions. Experimental results demonstrate that the proposed EDA can improve the performance in terms of anonymity and service time with minimized communication overhead.
关键词: Location-based servicePrivacy preservationSpatial cloakingMobile peer-to-peer networks    
Abstract: Various solutions have been proposed to enable mobile users to access location-based services while preserving their location privacy. Some of these solutions are based on a centralized architecture with the participation of a trustworthy third party, whereas some other approaches are based on a mobile peer-to-peer (P2P) architecture. The former approaches suffer from the scalability problem when networks grow large, while the latter have to endure either low anonymization success rates or high communication overheads. To address these issues, this paper deals with an enhanced dual-active spatial cloaking algorithm (EDA) for preserving location privacy in mobile P2P networks. The proposed EDA allows mobile users to collect and actively disseminate their location information to other users. Moreover, to deal with the challenging characteristics of mobile P2P networks, e.g., constrained network resources and user mobility, EDA enables users (1) to perform a negotiation process to minimize the number of duplicate locations to be shared so as to significantly reduce the communication overhead among users, (2) to predict user locations based on the latest available information so as to eliminate the inaccuracy problem introduced by using some out-of-date locations, and (3) to use a latest-record-highest-priority (LRHP) strategy to reduce the probability of broadcasting fewer useful locations. Extensive simulations are conducted for a range of P2P network scenarios to evaluate the performance of EDA in comparison with the existing solutions. Experimental results demonstrate that the proposed EDA can improve the performance in terms of anonymity and service time with minimized communication overhead.
Key words: Location-based service    Privacy preservation    Spatial cloaking    Mobile peer-to-peer networks
收稿日期: 2012-09-20 出版日期: 2013-04-30
CLC:  TP393  
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
Yan-zhe Che
Kevin Chiew
Xiao-yan Hong
Qiang Yang
Qin-ming He

引用本文:

Yan-zhe Che, Kevin Chiew, Xiao-yan Hong, Qiang Yang, Qin-ming He. EDA: an enhanced dual-active algorithm for location privacy preservation in mobile P2P networks. Front. Inform. Technol. Electron. Eng., 2013, 14(5): 356-373.

链接本文:

http://www.zjujournals.com/xueshu/fitee/CN/10.1631/jzus.C1200267        http://www.zjujournals.com/xueshu/fitee/CN/Y2013/V14/I5/356

[1] Mei-juan Jia, Hui-qiang Wang, Jun-yu Lin, Guang-sheng Feng, Hai-tao Yu. DGTM:基于动态分组的移动P2P网络信任模型[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 559-569.
[2] Shuo Wang, Jiao Zhang, Tao Huang, Jiang Liu, Yun-jie Liu, F. Richard Yu. 流追踪:一种软件定义网络中低开销的时延测量和路径追踪方法[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(2): 206-219.
[3] Dong-wei Xu, Yong-dong Wang, Li-min Jia, Yong Qin, Hong-hui Dong. 基于ARIMA和Kalman滤波的道路交通状态实时预测[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(2): 287-302.
[4] Jun-feng Xie, Ren-chao Xie, Tao Huang, Jiang Liu, F. Richard Yu, Yun-jie Liu. 一种基于博弈论的无线接入网中缓存资源共享方法[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(12): 1253-1265.
[5] Reza Sookhtsaraei, Javad Artin, Ali Ghorbani, Ahmad Faraahi, Hadi Adineh. 基于位置的数据云复制管理器[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(12): 1275-1286.
[6] Da-fang Zhang, Dan Chen, Yan-biao Li, Kun Xie, Tong Shen. 虚拟化路由器中基于融合再拆分的多表压缩及快速重构机制[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(12): 1266-1274.
[7] Gui-lin CAI, Bao-sheng WANG, Wei HU, Tian-zuo WANG. 移动目标防御:现状及特征[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(11): 1122-1153.
[8] Guang-jia Song, Zhen-zhou Ji. 匿名地址解析模型[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(10): 1044-1055.
[9] Adel Khosravi, Yousef Seifi Kavian. 一种用于判断分布式网络中故障节点的自主故障诊断及决策算法[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(9): 885-896.
[10] Mingjie Feng, Shiwen Mao, Tao Jiang. 利用软件定义网络结构提升未来无线通信网络性能的方法研究与展望[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(7): 606-619.
[11] Gang Xiong, Yu-xiang Hu, Le Tian, Ju-long Lan, Jun-fei Li, Qiao Zhou. 一种基于改进量子遗传算法的虚拟服务部署方法[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(7): 661-671.
[12] En-zhong Yang, Lin-kai Zhang, Zhen Yao, Jian Yang. 软件定义网络中采用可伸缩视频组播的视频会议系统[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(7): 672-681.
[13] Vignesh Renganathan Raja, Chung-Horng Lung, Abhishek Pandey, Guo-ming Wei, Anand Srinivasan. 软件定义网络组播中一种基于Subtree来进行失败检测和保护的方法[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(7): 682-700.
[14] Huan-zhao Wang, Peng Zhang, Lei Xiong, Xin Liu, Cheng-chen Hu. 一种安全、高性能的软件定义网络多控制器体系结构[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(7): 634-646.
[15] Peng Xiao, Zhi-yang Li, Song Guo, Heng Qi, Wen-yu Qu, Hai-sheng Yu. 一种K自适应的广域网SDN控制器部署方法[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(7): 620-633.