Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2011, Vol. 12 Issue (6): 499-506    DOI: 10.1631/jzus.C1000201
    
An efficient hardware design for HDTV H.264/AVC encoder
Liang Wei1,2, Dan-dan Ding1,2, Juan Du1,2, Bin-bin Yu1,2, Lu Yu*,1,2
1 Institute of Information and Communication Engineering, Zhejiang University, Hangzhou 310027, China 2 Zhejiang Provincial Key Laboratory of Information Network Technology, Hangzhou 310027, China
An efficient hardware design for HDTV H.264/AVC encoder
Liang Wei1,2, Dan-dan Ding1,2, Juan Du1,2, Bin-bin Yu1,2, Lu Yu*,1,2
1 Institute of Information and Communication Engineering, Zhejiang University, Hangzhou 310027, China 2 Zhejiang Provincial Key Laboratory of Information Network Technology, Hangzhou 310027, China
 全文: PDF(187 KB)  
摘要: This paper presents a hardware efficient high definition television (HDTV) encoder for H.264/AVC. We use a two-level mode decision (MD) mechanism to reduce the complexity and maintain the performance, and design a sharable architecture for normal mode fractional motion estimation (NFME), special mode fractional motion estimation (SFME), and luma motion compensation (LMC), to decrease the hardware cost. Based on these technologies, we adopt a four-stage macro-block pipeline scheme using an efficient memory management strategy for the system, which greatly reduces on-chip memory and bandwidth requirements. The proposed encoder uses about 1126k gates with an average Bjontegaard-Delta peak signal-to-noise ratio (BD-PSNR) decrease of 0.5 dB, compared with JM15.0. It can fully satisfy the real-time video encoding for 1080p@30 frames/s of H.264/AVC high profile.
关键词: H.264/AVCHigh-definition television (HDTV)HardwareArchitectureEncoder     
Abstract: This paper presents a hardware efficient high definition television (HDTV) encoder for H.264/AVC. We use a two-level mode decision (MD) mechanism to reduce the complexity and maintain the performance, and design a sharable architecture for normal mode fractional motion estimation (NFME), special mode fractional motion estimation (SFME), and luma motion compensation (LMC), to decrease the hardware cost. Based on these technologies, we adopt a four-stage macro-block pipeline scheme using an efficient memory management strategy for the system, which greatly reduces on-chip memory and bandwidth requirements. The proposed encoder uses about 1126k gates with an average Bjontegaard-Delta peak signal-to-noise ratio (BD-PSNR) decrease of 0.5 dB, compared with JM15.0. It can fully satisfy the real-time video encoding for 1080p@30 frames/s of H.264/AVC high profile.
Key words: H.264/AVC    High-definition television (HDTV)    Hardware    Architecture    Encoder
收稿日期: 2010-06-16 出版日期: 2011-06-07
CLC:  TN919.8  
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
Liang Wei
Dan-dan Ding
Juan Du
Bin-bin Yu
Lu Yu

引用本文:

Liang Wei, Dan-dan Ding, Juan Du, Bin-bin Yu, Lu Yu. An efficient hardware design for HDTV H.264/AVC encoder. Front. Inform. Technol. Electron. Eng., 2011, 12(6): 499-506.

链接本文:

http://www.zjujournals.com/xueshu/fitee/CN/10.1631/jzus.C1000201        http://www.zjujournals.com/xueshu/fitee/CN/Y2011/V12/I6/499

[1] Feng WEI, Wei-xia ZOU. Suboptimal network coding subgraph algorithms for 5G minimum-cost multicast networks[J]. Front. Inform. Technol. Electron. Eng., 2018, 19(5): 662-673.
[2] Xiang-ke LIAO, Kai LU, Can-qun YANG, Jin-wen LI, Yuan YUAN, Ming-che LAI, Li-bo HUANG, Ping-jing LU, Jian-bin FANG, Jing REN, Jie SHEN. Moving from exascale to zettascale computing: challenges and techniques[J]. Front. Inform. Technol. Electron. Eng., 2018, 19(10): 1236-1244.
[3] Xiang-hui XIE, Xun JIA. Exploring high-performance processor architecture beyond the exascale[J]. Front. Inform. Technol. Electron. Eng., 2018, 19(10): 1224-1229.
[4] Jian CHENG , Pei-song WANG, Gang LI, Qing-hao HU, Han-qing LU. Recent advances in efficient computation of deep convolutional neural networks[J]. Front. Inform. Technol. Electron. Eng., 2018, 19(1): 64-77.
[5] Jiong FU, Xue-shan LUO, Ai-min LUO, Jun-xian LIU. Enterprise-level business component identification in business architecture integration[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(9): 1320-1335.
[6] Zong-feng QI, Qiao-qiao LIU, Jun WANG, Jian-xun LI. Battle damage assessment based on an improved Kullback-Leibler divergence sparse autoencoder[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(12): 1991-2000.
[7] Mian CHENG, Jin-shu SU, Jing XU. Real-time pre-processing system with hardware accelerator for mobile core networks[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(11): 1720-1719.
[8] Kai Huang, De Ma, Rong-jie Yan, Hai-tong Ge, Xiao-lang Yan. High throughput VLSI architecture for H.264/AVC context-based adaptive binary arithmetic coding (CABAC) decoding[J]. Front. Inform. Technol. Electron. Eng., 2013, 14(6): 449-463.
[9] Du Wan Cheun, Hyun Jung La, Soo Dong Kim. A taxonomic framework for autonomous service management in Service-Oriented Architecture[J]. Front. Inform. Technol. Electron. Eng., 2012, 13(5): 339-354.
[10] Xiang Wang, Yong Ding, Ming-yu Liu, Xiao-lang Yan. Efficient implementation of a cubic-convolution based image scaling engine[J]. Front. Inform. Technol. Electron. Eng., 2011, 12(9): 743-753.
[11] Xiao-ying Wang, Wen-ting Guo, Yang-yang Peng, Wen-quan Sui. GaAs pHEMT multi-band/multi-mode SP9T switch for quad-band GSM and UMTS handsets applications[J]. Front. Inform. Technol. Electron. Eng., 2011, 12(4): 317-322.
[12] Kui-kang Cao, Hai-bin Shen, Hua-feng Chen. A parallel and scalable digital architecture for training support vector machines[J]. Front. Inform. Technol. Electron. Eng., 2010, 11(8): 620-628.
[13] Imran Ghani, Choon Yeul Lee, Sung Hyun Juhn, Seung Ryul Jeong. Semantics-oriented approach for information interoperability and governance: towards user-centric enterprise architecture management[J]. Front. Inform. Technol. Electron. Eng., 2010, 11(4): 227-240.