Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2015, Vol. 16 Issue (7): 532-540    DOI: 10.1631/FITEE.1400368
    
基于社会标签和时间兴趣演变模型的微博推荐算法
Zhen-ming Yuan, Chi Huang, Xiao-yan Sun, Xing-xing Li, Dong-rong Xu
School of Information Science and Engineering, Hangzhou Normal University, Hangzhou 311121, China; MRI Unit & Epidemiology Division, Psychiatry Department, Columbia University & New York State Psychiatric Institute, New York 10032, USA
A microblog recommendation algorithm based on social tagging and a temporal interest evolution model
Zhen-ming Yuan, Chi Huang, Xiao-yan Sun, Xing-xing Li, Dong-rong Xu
School of Information Science and Engineering, Hangzhou Normal University, Hangzhou 311121, China; MRI Unit & Epidemiology Division, Psychiatry Department, Columbia University & New York State Psychiatric Institute, New York 10032, USA
 全文: PDF 
摘要: 目的:微博推荐面临用户冷启动和主题兴趣变化的挑战。研究考虑主题兴趣变化的个性化微博推荐算法,可在一定程度上同时解决用户冷启动问题。
创新点:提出一种基于时间兴趣演变模型和社会标签预测的协同过滤推荐算法。该算法充分利用社会网络和标签热度随时间的演变模型,提高了推荐准确率。
方法:首先,用三个矩阵建模用户、标签和微博之间的关系(图2)。然后根据标签的兴趣演变模型优化每个微博的标签评分(图3)。对于用户冷启动问题,设计一种基于社区发现和最大标签投票算法来预测用户相关的标签。最后,给用户推荐具有最大候选标签集概率的前n个微博(图1)。
结论:在新浪微博数据集上的实验验证了所提算法在获得好的招回率和准确率的同时,可以较好地符合时间演变性能。问卷调查也证明了在冷启动发生时推荐结果的用户满意度。
关键词: 推荐系统协同过滤社会化标签兴趣演变模型    
Abstract: Personalized microblog recommendations face challenges of user cold-start problems and the interest evolution of topics. In this paper, we propose a collaborative filtering recommendation algorithm based on a temporal interest evolution model and social tag prediction. Three matrices are first prepared to model the relationship between users, tags, and microblogs. Then the scores of the tags for each microblog are optimized according to the interest evolution model of tags. In addition, to address the user cold-start problem, a social tag prediction algorithm based on community discovery and maximum tag voting is designed to extract candidate tags for users. Finally, the joint probability of a tag for each user is calculated by integrating the Bayes probability on the set of candidate tags, and the top n microblogs with the highest joint probabilities are recommended to the user. Experiments using datasets from the microblog of Sina Weibo showed that our algorithm achieved good recall and precision in terms of both overall and temporal performances. A questionnaire survey proved user satisfaction with recommendation results when the cold-start problem occurred.
Key words: Recommender system    Collaborative filtering    Social tagging    Interest evolution model
收稿日期: 2014-10-30 出版日期: 2015-07-06
CLC:  TP393  
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
Zhen-ming Yuan
Chi Huang
Xiao-yan Sun
Xing-xing Li
Dong-rong Xu

引用本文:

Zhen-ming Yuan, Chi Huang, Xiao-yan Sun, Xing-xing Li, Dong-rong Xu. A microblog recommendation algorithm based on social tagging and a temporal interest evolution model. Front. Inform. Technol. Electron. Eng., 2015, 16(7): 532-540.

链接本文:

http://www.zjujournals.com/xueshu/fitee/CN/10.1631/FITEE.1400368        http://www.zjujournals.com/xueshu/fitee/CN/Y2015/V16/I7/532

[1] Bin Ju, Yun-tao Qian, Min-chao Ye. 基于兴趣转移模型的协同过滤算法[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(6): 489-500.
[2] Ming Yang, Ying-ming Li, Zhongfei (Mark) Zhang. 基于主题回归和关联矩阵分解的科技文献推荐[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(11): 984-998.