Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2015, Vol. 16 Issue (4): 293-300    DOI: 10.1631/FITEE.1400282
    
OMMR:一种关键模块重叠部分评价指标
Xiao-xia Zhang, Qiang-hua Xiao, Bin Li, Sai Hu, Hui-jun Xiong, Bi-hai Zhao
Department of Mathematics and Computer Science, Changsha University, Changsha 410003, China; School of Information Science and Engineering, Central South University, Changsha 410083, China
Overlap maximum matching ratio (OMMR): a new measure to evaluate overlaps of essential modules
Xiao-xia Zhang, Qiang-hua Xiao, Bin Li, Sai Hu, Hui-jun Xiong, Bi-hai Zhao
Department of Mathematics and Computer Science, Changsha University, Changsha 410003, China; School of Information Science and Engineering, Central South University, Changsha 410083, China
 全文: PDF 
摘要: 目的:设计蛋白质复合物或功能模块重叠部分评价指标。
创新点:考虑到蛋白质复合物重叠部分与关键蛋白质识别之间存在紧密联系,首次提出关键模块评价指标—重叠最大匹配率(OMMR),可用于评价挖掘的具有重叠部分的功能模块算法优劣,从而进一步服务于关键蛋白质的识别。
方法:首先,通过Benchmark集分析,得到参考Overlap集合。然后得到功能模块预测算法得到的复合物集合的overlap集合,利用公式(5)得到该预测算法的OMMR值。
结论:重叠蛋白复合物,尤其是它们的重叠部分,在识别必要性蛋白中发挥重要作用。本文提出名为OMMR的方法来评估必要性模块的重叠部分。实验结果表明重叠部分的重要性,并揭示重叠部分与关键性蛋白识别之间关系。
关键词: 蛋白质相互作用网络关键模块重叠部分OMMR    
Abstract: Protein complexes are the basic units of macro-molecular organizations and help us to understand the cell’s mechanism. The development of the yeast two-hybrid, tandem affinity purification, and mass spectrometry high-throughput proteomic techniques supplies a large amount of protein-protein interaction data, which make it possible to predict overlapping complexes through computational methods. Research shows that overlapping complexes can contribute to identifying essential proteins, which are necessary for the organism to survive and reproduce, and for life’s activities. Scholars pay more attention to the evaluation of protein complexes. However, few of them focus on predicted overlaps. In this paper, an evaluation criterion called overlap maximum matching ratio (OMMR) is proposed to analyze the similarity between the identified overlaps and the benchmark overlap modules. Comparison of essential proteins and gene ontology (GO) analysis are also used to assess the quality of overlaps. We perform a comprehensive comparison of serveral overlapping complexes prediction approaches, using three yeast protein-protein interaction (PPI) networks. We focus on the analysis of overlaps identified by these algorithms. Experimental results indicate the important of overlaps and reveal the relationship between overlaps and identification of essential proteins.
Key words: Protein-protein interaction network    Essential protein modules    Overlap    Overlap maximum matching ratio
收稿日期: 2014-08-06 出版日期: 2015-04-03
CLC:  TP311  
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
Xiao-xia Zhang
Qiang-hua Xiao
Bin Li
Sai Hu
Hui-jun Xiong
Bi-hai Zhao

引用本文:

Xiao-xia Zhang, Qiang-hua Xiao, Bin Li, Sai Hu, Hui-jun Xiong, Bi-hai Zhao. Overlap maximum matching ratio (OMMR): a new measure to evaluate overlaps of essential modules. Front. Inform. Technol. Electron. Eng., 2015, 16(4): 293-300.

链接本文:

http://www.zjujournals.com/xueshu/fitee/CN/10.1631/FITEE.1400282        http://www.zjujournals.com/xueshu/fitee/CN/Y2015/V16/I4/293

[1] Deng Chen, Yan-duo Zhang, Wei Wei, Shi-xun Wang, Ru-bing Huang, Xiao-lin Li, Bin-bin Qu, Sheng Jiang. 基于改进规则检查静态分析技术的高效脆弱性检测方法[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(3): 332-345.
[2] Long-xiang Wang, Xiao-she Dong, Xing-jun Zhang, Yin-feng Wang, Tao Ju, Guo-fu Feng. TextGen:用于新型存储系统基准测试的真实文本数据集生成方法[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(10): 982-993.
[3] Shahab Pourtalebi, Imre Horváth. 用于定义系统表现特征的基因型与表型仓库数据库的信息图式构造方法[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(9): 862-884.
[4] Saif Ur Rehman Khan, Sai Peck Lee, Mohammad Dabbagh, Muhammad Tahir, Muzafar Khan, Muhammad Arif. RePizer:一种软件需求排序架构[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(8): 750-765.
[5] Mohammad Alshayeb, Nasser Khashan, Sajjad Mahmood. 一种集成的统一建模语言框架[J]. Frontiers of Information Technology & Electronic Engineering, 2016, 17(2): 143-159.
[6] Hui-zong Li, Xue-gang Hu, Yao-jin Lin, Wei He, Jian-han Pan. 基于共同共现群体相似度的社会化标签聚类方法[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(2): 122-134.
[7] . Dr. Hadoop: an infinite scalable metadata management for Hadoop—How the baby elephant becomes immortal[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(1): 15-31.
[8] Ignacio Marin, Francisco Ortin, German Pedrosa, Javier Rodriguez. 使用模型变换为多种终端生成原生用户界面[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(12): 995-1017.
[9] Hong Yin, Shu-qiang Yang, Xiao-qian Zhu, Shao-dong Ma, Lu-min Zhang. 基于趋势特征的时间序列符号化方法[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(9): 744-758.
[10] Ping Xie, Jian-zhong Huang, Er-wei Dai, Qiang Cao, Chang-sheng Xie. 一种负载平衡的RAID-6存储方案[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(5): 335-345.
[11] Yu-xiang Li, Yin-liang Zhao, Bin Liu, Shuo Ji. 基于人工免疫算法的推测多线程线程划分参数的优化[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(3): 205-216.
[12] László Lengyel, Hassan Charaf. 测试驱动的模式转换检验/认证[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(2): 85-97.
[13] Alireza Parvizi-Mosaed, Shahrouz Moaven, Jafar Habibi, Ghazaleh Beigi, Mahdieh Naser-Shariat. 基于扩展型服务导向建模与应用(SOMA)的一种自适应服务导向方法[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(1): 43-69.
[14] Zi-ying Dai, Xiao-guang Mao, Li-qian Chen, Yan Lei. Automatic recovery from resource exhaustion exceptions by collecting leaked resources[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(8): 622-635.
[15] Juan J. Cuadrado-Gallego, Alain Abran, Pablo Rodriguez-Soria, Miguel A. Lara. An experimental study on the conversion between IFPUG and UCP functional size measurement units[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(3): 161-173.