Please wait a minute...
浙江大学学报(理学版)  2020, Vol. 47 Issue (2): 218-222    DOI: 10.3785/j.issn.1008-9497.2020.02.012
地球科学     
虚拟震源测深法及其在INDEPTH-3台阵中的应用
江洋
浙江大学 海洋学院,浙江 舟山 316000
Virtual deep seismic sounding method and it’s application in Tibet
JIANG Yang
Ocean College, Zhejiang University, Zhoushan 316000, Zhejiang Province, China
 全文: PDF(1489 KB)   HTML  
摘要: 基于中美合作项目INDEPTH第3期在青藏高原布设的台站,使用虚拟震源测深法研究青藏高原中部的地壳厚度。结果显示,拉萨地体和羌塘地体的地壳结构存在巨大差异。拉萨地体的地壳厚度大约为57 km,与艾里均衡说预测的地壳厚度基本一致,说明拉萨地体的地壳结构比较简单。羌塘地体的地壳厚度为60~75 km,向北有增厚趋势,明显较艾里均衡说预测的地壳厚,说明羌塘地体地壳结构比较复杂,原因有可能是羌塘地体下存在高温流体和低速带,或者与印度板块岩石圈在班公湖-怒江缝合带以北向下俯冲有关。
关键词: 青藏高原虚拟震源测深法地壳厚度艾里均衡说    
Abstract: Based on the stations deployed by project INDEPTH-3, virtual deep seismic sounding (VDSS) method was applied to study the crustal thickness in central Tibet. The results reveal that the huge difference between the crustal structure beneath Lhasa Terrane and Qiangtang Terrane. The crustal thickness beneath Lhasa Terrane is about 57 km, which is consistent with the crustal thickness predicted by Airy isostasy, indicating that the crustal structure beneath Lhasa Terrane is relatively simple. In addition, the crustal thickness beneath Qiangtang Terrane is from 60 to 75 km and thicker than that predicated from Airy isostasy. The results suggest that the crustal structure beneath Qiangtang Terrane is complicated and the reasons are possibly thermo-fluid and low velocity zone that may exist or Indian lithosphere subducting northward from Bangong-Nujiang suture.
Key words: Tibet    virtual deep seismic sounding    crustal thickness    Airy isostasy
收稿日期: 2019-01-17 出版日期: 2020-03-25
CLC:  P225  
作者简介: 江洋(1991—),ORCID: https://orcid.org/0000-0002-7663-1998,男,硕士研究生,主要从事地壳和地幔结构研究,E-mail: jiangyang2467@zju.edu.cn.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
江洋

引用本文:

江洋. 虚拟震源测深法及其在INDEPTH-3台阵中的应用[J]. 浙江大学学报(理学版), 2020, 47(2): 218-222.

JIANG Yang. Virtual deep seismic sounding method and it’s application in Tibet. Journal of Zhejiang University (Science Edition), 2020, 47(2): 218-222.

链接本文:

https://www.zjujournals.com/sci/CN/10.3785/j.issn.1008-9497.2020.02.012        https://www.zjujournals.com/sci/CN/Y2020/V47/I2/218

1 AMMONC J. The isolation of receiver effects from teleseismic P waveforms[J]. Bulletin of the Seismological Society of America, 1991, 81(6): 2504-2510.
2 ZANDTG, RANDALLG E. Observations of shear-coupled P waves[J]. Geophysical Research Letters, 1985, 12(9): 565-568. DOI:10.1029/gl012i009p00565
3 OWENST J, ZANDTG. Implications of crustal property variations for models of Tibetan plateau evolution[J]. Nature, 1997, 387(6628): 37-43.DOI:10.1038/387037a0
4 ZHOUL M, CHENW P, OZALAYBEYS. Seismic properties of the central Indian shield[J]. Bulletin of the Seismological Society of America, 2000, 90(5): 1295-1304.
5 KANGD, YUC Q, NINGJ Y, et al. Simultaneous determination of crustal thickness and p wave speed by virtual deep seismic sounding (vdss)[J]. Seismological Research Letters, 2016, 87(5):1104-1111.
6 YUC Q, CHENW P, NINGJ Y, et al. Thick crust beneath the Ordos plateau: Implications for instability of the North China craton-1[J]. Earth and Planetary Science Letters, 2012, 357-358: 366-375.DOI:10.1016/j.epsl.2012.09.027
7 LIUT Z, KLEMPERERS L, YUC Q, et al. Post-critical SsPmp and its applications to virtual deep seismic sounding (VDSS): Sensitivity to lithospheric 1-D and 2-D structure-1[J]. Geophysical Journal International, 2018, 215(2): 880-894.DOI:10.1093/gji/ggy307
8 YUC Q, CHENW P, HILST R DVAN DER. Removing source-side scattering for virtual deep seismic sounding (VDSS)[J]. Geophysical Journal International, 2013, 195(3): 1932-1941.
9 TSENGT L, CHENW P, NOWACKR L. Northward thinning of Tibetan crust revealed by virtual seismic profiles[J]. Geophysical Research Letters, 2009, 36: L24304.DOI:10.1029/2009gl040457
10 KINDR, YUANX, SAULJ, et al. Seismic images of crust and upper mantle beneath Tibet: Evidence for Eurasian plate subduction[J]. Science, 2002, 298(5596): 1219-1221.
11 YUC Q, CHENW P, HILST R DVAN DER. Constraints on residual topography and crustal properties in western United States from virtual deep seismic sounding[J]. Journal of Geophysical Research(Solid Earth), 2016, 121(8): 5917-5930.
12 MEISSNERR, TILMANNF, HAINESS. About the lithospheric structure of central Tibet, based on seismic data from the INDEPTH III profile[J]. Tectonophysics, 2004, 380(1/2): 1-25.DOI:10.1016/j.tecto.2003.11.007
13 赵文津, 薛光琦, 赵逊, 等. INDEPTH-3 地震层析成像——藏北印度岩石圈俯冲断落的证据[J]. 地球学报, 2004, 25(1): 1-10. ZHAOW J, XUEG Q, ZHAOX, et al. Seismic imaging of the subducting Indian lithosphere beneath north Tibet[J]. Acta Geoscientica Sinica, 2004, 25(1): 1-10.
[1] 申紫薇, 田荣湘, 张超. 青藏高原地气温差与印度洋海气温差的相互影响[J]. 浙江大学学报(理学版), 2018, 45(5): 576-588.
[2] 田荣湘, 康玉香, 张文滨, 奚凤, 张超. 太阳辐射和大气环流在青藏高原气温季节变化中的作用[J]. 浙江大学学报(理学版), 2017, 44(1): 84-96.