Please wait a minute...
浙江大学学报(理学版)  2019, Vol. 46 Issue (5): 537-542    DOI: 10.3785/j.issn.1008-9497.2019.05.004
数学与计算机科学     
二元体相分离模型的静态分歧
闫东明
浙江财经大学 数据科学学院,浙江 杭州 310018
On the steady state bifurcation of the binary alloys system.
YAN Dongming
School of Data Sciences, Zhejiang University of Finance and Economics, Hangzhou 310018, China
 全文: PDF(409 KB)   HTML  
摘要: 运用非线性分歧理论,研究二元体相分离模型的静态分歧,给出了一个与该模型线性问题第一特征值相关的临界值。当参数超过该临界值时,二元体相分离模型有静态分歧发生,此时相应的二元体有相分离现象发生。此外,提出影响二元体相分离现象发生的主要因素是晶格间距和二元体所在区域的形状。
关键词: 二元体模型分歧理论Fredholm 算子静态分歧相分离    
Abstract: In this paper, the steady state bifurcation of the binary alloys system is investigated. By using the nonlinear bifurcation theory, we prove that this system bifurcates from the trivial solution to the nontrivial solution branch when the parameter crosses certain critical value, which is related to the first eigenvalue of the relevant linear problem. In this case phase separation will occur in binary alloys. Furthermore, we obtain that lattice spacing and the shape of the domain are the key factors that affect the phase separation in binary alloys.
Key words: binary alloys    bifurcation theory    Fredholm operator    steady state bifurcation    phase separation
收稿日期: 2018-12-11 出版日期: 2019-09-25
CLC:  O175.8  
作者简介: 闫东明(1982—),ORCID: http://orcid.org/0000-0002-2893-4871,男,博士,讲师,主要从事分歧理论研究,E-mail:13547895541@126.com.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
闫东明

引用本文:

闫东明. 二元体相分离模型的静态分歧[J]. 浙江大学学报(理学版), 2019, 46(5): 537-542.

YAN Dongming. On the steady state bifurcation of the binary alloys system.. Journal of ZheJIang University(Science Edition), 2019, 46(5): 537-542.

链接本文:

https://www.zjujournals.com/sci/CN/10.3785/j.issn.1008-9497.2019.05.004        https://www.zjujournals.com/sci/CN/Y2019/V46/I5/537

1 CAHNJ W, NOVICK-COHENA. Evolution equations for phase separation and ordering in binary alloys[J]. Journal of Statistical Physics, 1994, 76(3/4): 877-909. DOI:10.1007/bf02188691
2 LAURENCEC, ALAINM. Finite-dimensional attractors for a model of Allen-Cahn equation based on a microforce balance[J]. Comptes Rendus de l'Academie des Sciences-Series I-Mathematics, 1999, 329(12): 1109-1114.
3 PACARDF, WEIJ C. Stable solutions of the Allen-Cahn equation in dimension 8 and minimal cones[J]. Journal of Functional Analysis, 2013, 264(5): 1131-1167. DOI:10.1016/j.jfa.2012.03.010
4 CHANH, WEIJ C. Traveling wave solutions for bistable fractional Allen-Cahn equations with a pyramidal front[J]. Journal of Differential Equations, 2017, 262(9): 4567-4609.DOI:10.1016/j.jde.2016.12.010
5 LID S, ZHONGC K. Global attractor for the Cahn-Hilliard system with fast growing nonlinearity[J]. Journal of Differential Equations, 1998, 149(2): 191-210. DOI:10.1006/jdeq.1998.3429
6 SONGL Y, ZHANGY D, MAT. Global attractor of the Cahn-Hilliard equation in Hk spaces[J]. Journal of Mathematical Analysis and Applications, 2009, 355(1): 53-62.
7 KUBOM. The Cahn-Hilliard equation with time-dependent constraint[J]. Nonlinear Analysis:Theory,Methods and Applications, 2012, 75(14): 5672-5685.DOI:10.1016/j.na.2012.05.015
8 BROCHETD, HILHORSTD, NOVICK-COHENA. Finite-dimensional exponential attractor for a model for order-disorder and phase separation [J]. Applied Mathematics Letters, 1994, 7(3): 83-87.DOI:10.1016/0893-9659(94)90118-x
9 NOVICK-COHENA. Triple-junction motion for an Allen-Cahn/Cahn-Hilliard system[J]. Physica D: Nonlinear Phenomena, 2000, 137(1/2): 1-24.DOI:10.1016/s0167-2789(99)00162-1
10 GOKIELIM, ITO A. Global attractor for the Cahn-Hilliard/Allen-Cahn system [J]. Nonlinear Analysis: Theory, Methods and Applications, 2003, 52(7): 1821-1841. DOI:10.1016/s0362-546x(02)00303-6
11 GOKIELIM, MARCINKOWSKIL. Modelling phase transitions in alloys[J]. Nonlinear Analysis:Theory,Methods and Applications, 2005, 63(5/6/7): 1143-1153.
12 MAT, WANGS H. Phase Transition Dynamics[M]. New York: Springer-Verlag, 2013.
13 MAT, WANGS H. Bifurcation Theory and Applications[M]. Singapore: World Scientific, 2005.DOI:10.1142/9789812701152
14 YAND M. Dynamical Behavior of A Class of Gradient-type Evolution Equations[D]. Chengdu: Sichuan University, 2013.
15 SHIJ P, WANGX F. On global bifurcation for quasilinear elliptic systems on bounded domains[J]. Journal of Differential Equations, 2009, 246(7): 2788–2812. DOI:10.1016/j.jde.2008.09.009
[1] 张申贵. 一类分数阶px)-拉普拉斯方程的多重解[J]. 浙江大学学报(理学版), 2020, 47(5): 535-540.
[2] 李仲庆. 一个带权函数的拟线性椭圆方程的有界弱解[J]. 浙江大学学报(理学版), 2020, 47(1): 77-80.
[3] 马满堂, 贾凯军. 带非线性边界条件的二阶奇异微分系统正解的存在性[J]. 浙江大学学报(理学版), 2019, 46(6): 686-690.
[4] 赵如慧, 韩晓玲. 二阶三点边值问题的对称正解[J]. 浙江大学学报(理学版), 2018, 45(5): 540-544.
[5] 闫东明. 一类奇异边值问题正解的存在性及多解性[J]. 浙江大学学报(理学版), 2017, 44(3): 281-286,338.
[6] 杨小娟, 韩晓玲. 一类分数阶非线性微分包含初值问题的可解性[J]. 浙江大学学报(理学版), 2017, 44(3): 287-291.
[7] 沈文国. 非线性项在零点非渐进增长的四阶边值问题单侧全局分歧[J]. 浙江大学学报(理学版), 2016, 43(5): 525-531.