Please wait a minute...
浙江大学学报(理学版)  2019, Vol. 46 Issue (1): 48-57    DOI: 10.3785/j.issn.1008-9497.2019.01.007
物理学     
水环境下羧基与氨基间为单氢键的α-Ala旋光异构及羟自由基和氢氧根的作用
闫红彦1, 王佐成2, 佟华2, 杨晓翠2
1.白城师范学院 计算机科学学院,吉林 白城 137000
2.白城师范学院物理学院,吉林 白城 137000
Effect of optical isomerism of α-Ala molecules with hydrogen bonds between carboxyl groups and amino and the roles of hydroxyl radicals and hydroxyl group in water environment
YAN Hongyan1, WANG Zuocheng2, TONG Hua2, YANG Xiaocui2
1.Computer Science College, Baicheng Normal University, Baicheng 137000, Jilin Province, China
2.College of Physics, Baicheng Normal University, Baicheng 137000, Jilin Province, China
 全文: PDF(4192 KB)   HTML  
摘要: 采用密度泛函理论的B3LYP方法、微扰理论的MP2方法和自洽反应场(SCRF)理论的SMD模型方法,研究了水环境下羧基与氨基间为单氢键的α-Ala旋光异构及羟自由基和氢氧根作用的反应。研究发现:α-Ala的旋光异构可在a和b两个通道实现,a通道为羧基顺反异构后,水分子簇作媒介质子以氨基为桥从α碳的一侧向另一侧迁移;b通道为水分子簇作媒介,质子从α碳向氨基氮的迁移与羧基顺反异构协同进行。在a通道,羟自由基水分子簇可致α-Ala损伤。势能面计算表明:水环境下,在a通道3个水分子簇作氢迁移媒介,决速步能垒为113.37 kJ·mol-1,氢氧根水分子簇的催化使该能垒降到64.45 kJ·mol-1;在b通道2个水分子簇作氢迁移媒介,决速步能垒为135.00 kJ·mol-1。羟自由基水分子簇致α-Ala损伤的能垒在水分子抽氢和羟自由基抽氢时分别为24.47和 80.60 kJ·mol-1
关键词: α-丙氨酸羟自由基氢氧根密度泛函理论过渡态微扰理论自洽反应场旋光异构    
Abstract: The title reaction is studied by using the B3LYP method of density functional theory, the MP2 method of perturbation theory and the SMD model method based on self-consistent reaction field (SCRF) theory. The research shows that there are two channels a and b in the optical isomer reaction of α-Ala. In channel a, the proton is transferred from the side of the α-carbon to the other side with the amino as the bridge after the carboxyl anti-isomeric using water clusters as medium, and hydroxyl radicals of water clusters can damage the α-Ala. In channel b, the transfer of proton from chiral carbon to amino groups is coordinated with the anti-isomerism of carboxyl groups with water clusters as medium. The potential energy surface calculation shows that the energy barrier of rate-limiting step is 113.37 kJ·mol-1 with three water molecule clusters as hydrogen transfer agents in channel a, while the hydroxyl groups reduce the barrier to 64.45 kJ·mol-1 in water liquid environment. In channel b, the energy barrier of rate-limiting step is 135.00 kJ·mol-1 with two water molecule clusters as hydrogen transfer agents. The energy barrier of hydrogen abstraction reaction which damage the α-Ala molecules is 24.47 kJ·mol-1 by water molecules and 80.60 kJ·mol-1 by hydroxyl radicals, relatively.
Key words: α-Ala    hydroxyl radical    hydroxyl group    density functional theory    transition state    perturbation theory    self-consistent reaction field    optical isomerism
收稿日期: 2017-12-10 出版日期: 2019-01-25
CLC:  O641.12  
基金资助: 吉林省科技发展计划项目(20130101308JC).
作者简介: 闫红彦(1979—),ORCID:http://orcid.org/0000-0002-3710-4669. 男,硕士,副教授,主要从事计算机及应用化学相关研究,E- mail:40591830@qq.com.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
闫红彦
王佐成
佟华
杨晓翠

引用本文:

闫红彦, 王佐成, 佟华, 杨晓翠. 水环境下羧基与氨基间为单氢键的α-Ala旋光异构及羟自由基和氢氧根的作用[J]. 浙江大学学报(理学版), 2019, 46(1): 48-57.

YAN Hongyan, WANG Zuocheng, TONG Hua, YANG Xiaocui. Effect of optical isomerism of α-Ala molecules with hydrogen bonds between carboxyl groups and amino and the roles of hydroxyl radicals and hydroxyl group in water environment. Journal of ZheJIang University(Science Edition), 2019, 46(1): 48-57.

链接本文:

https://www.zjujournals.com/sci/CN/10.3785/j.issn.1008-9497.2019.01.007        https://www.zjujournals.com/sci/CN/Y2019/V46/I1/48

1 FISHERG H, D'ANIELLOA, VETEREA, et al.Free D-aspartate and D-alanine in normal and Alzheimer brain [J]. Brain Research Bulletin, 1991, 26(6): 983–985. DOI: 10.1016/0361-9230(91)90266-M
2 THOMPSONR J, BOUWERH G, PORTNOYD A, et al.Pathogenicity and immunogenicity of a listeria monocytogenes strain that requires D-alanine for growth[J]. Infection and Immunity, 1998, 66(8): 3552-3561. DOI: 10.1021/jp9803135
3 TAJKHORSHIDE, JALKANENK J, SUHAIS.Structure and vibrational spectra of the zwitterion l-Alanine in the presence of explicit water molecules:? A density functional analysis[J]. Journal of Physical Chemistry B, 1998, 102 (30): 5899–5913.
4 STEPANIANS G, REVAI D, RADCHENKOE D, et al.Conformational behavior of α-Alanine matrix-isolation infrared and theoretical DFT and ab initio study[J]. Journal of Physical Chemistry A,1998, 102 (24): 4623–4629. DOI: 10.1021/jp973479z
5 WANGW Q, LIUY N, GONGY, et al.Chiral molecules parity breaking: The research on D and L alanine variable temperature neutron structure[J]. Acta Physico-Chimica Sinica, 2004, 20(11): 1345-1351.
6 WANGZ C, LIUF G, LYU Y, et al.Chiral transformaition mechanism ofα-Alanine under isolated condition by density functional theory[J]. Journal of Jilin University (Science Edition), 2014, 52 (4): 825-830. DOI: 10.13413/j.cnki.jdxblxb.2014.04.38
7 WANGZ C,ZHAOY H, MEIZ M, et al.Theoretical research on the chiral transformation pathway of α-alanine and effect of water molecules[J]. Journal of Zhejiang University(Science Edition), 2015, 42 (2): 189-197. DOI:10.3785/j.issn.1008-9497.2015.02.013
8 WANGZ C,TONGH, MEIZ M, et al.α-Alanine molecule chiral shift mechanism in water[J]. Journal of Jilin University (Science Edition), 2015,53 (1):134-141. DOI:10.13413/j.cnki.jdxblxb.2015.01.29
9 WANGZ C, LIUY F , YANH Y, et al.Theoretical investigations of the chiral transition of α?Amino acid confined in various sized armchair Boron-Nitride nanotubes[J]. The Journal of Physical Chemistry A,2017, 121(8): 1833-1840. DOI: 10.1021/acs.jpca.7b00079
10 TIANZ D, GAOFeng, YANGX C, et al. Mechanism of optical isomerism of α-Ala molecules with hydrogen bonds between amino and carboxyl groups and roles of water and hydroxyl radicals[J]. Journal of FuDan University(Natural Science), 2018, 57(4): 517-527. DOI: 0427-7104(2018)04-0517-10
11 HUANGZ J.Structures and Properties of the Amino Acids[D]. Beijing: University of Science and Technology of China, 2006. DOI:10.7666/d.y1078078
12 BECKEA D. Density-functional thermochemistry.III. The role of exact exchange [J]. Journal of Chemical Physics, 1993, 98(7): 5648-5652. DOI:10.1063/1.464913
13 GARRETTB C, TRUHLARD G.Criterion of minimum state density in the transition state theory of bimolecular reactions[J]. The Journal of Chemical Physics, 1979, 70(4): 1593-1598. DOI: 10.1063/1.437698
14 BINKLEYJ S, POPLEJ A. Moeller-Plesset theory for atomic ground state energies[J]. International Journal of Quantum Chemistry, 1975, 9(2):229-236. DOI: 10.1002/qua.560090204
15 MARENICHA V,CRAMERC J, TRUHLARD G,et al.Universal slovation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions[J]. Journal of Physical Chemistry B, 2009, 113(18): 6378-6396. DOI:10.1021/jp810292n
16 GONZALEZC, SCHLEGELH.Reaction path following in mass-weighted internal coordinates [J]. Journal of Physical Chemistry, 1990, 94(14): 5523-5527. DOI: 10.1021/j100377a021
17 FRISCHM J, TRUCKSG W, SCHLEGELH B, et al. Gaussian 09. Revision E.01[CP]. Pittsburgh U S A: Gaussian, Inc, Wallingford CT, 2013.
18 GORBL, LESZCZYNSKIJ.Intramolecular proton transfer in mono and dihydrated tautomers of Guanine: An ab initio post Hartree-fock study[J]. Journal of the American Chemical Society, 1998,120(20): 5024-5032. DOI: 10.1021/ja972017w
[1] 刘军, 姜春旭, 刘芳, 高峰, 张雪娇, 雷泽萍, 佟华, 王佐成. 水液相环境下α-丙氨酸Mn(Ⅱ)配合物旋光异构的理论研究[J]. 浙江大学学报(理学版), 2021, 48(6): 700-710.
[2] 徐锐英, 刘芳, 马宏源, 张雪娇, 潘宇, 杨晓翠, 王佐成. 气相环境下丙氨酸Ca2+配合物的手性转变机理及水分子的催化作用[J]. 浙江大学学报(理学版), 2020, 47(5): 630-641.
[3] 潘宇, 庄严, 姜春旭, 刘薛涛, 陶思宇, 佟华, 王佐成. 水液相环境下羟自由基诱导的苯丙氨酸分子损伤机理[J]. 浙江大学学报(理学版), 2019, 46(6): 705-715.
[4] 王佐成, 李晨洁, 董丽荣, 闫红彦, 佟华. 组氨酸分子几种稳定构型的手性转变机理及水溶剂化效应[J]. 浙江大学学报(理学版), 2018, 45(1): 103-111,117.
[5] 李江波,林瑞森. 喹诺酮模型化合物:2-吡酮酸和4-吡酮酸分子的ab initio理论研究[J]. 浙江大学学报(理学版), 2000, 27(5): 521-524.