Chemical characterization, release, and bioactivity of Eucalyptus camaldulensis polyphenols from freeze-dried sodium alginate and sodium carboxymethyl cellulose matrix
Excellence Research Laboratory on Natural Products, Department of Microbiology, Faculty of Science and Natural
Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla, Thailand
Abstract Crude ethanolic extract of Eucalyptus camaldulensis was encapsulated with sodium alginate–sodium carboxymethyl cellulose (CMC) using freeze-drying techniques. The microcapsules were characterized for particle size, morphology, physicochemical parameters, and micromeritics properties. Antioxidant and antimicrobial activities of the microcapsules were also demonstrated. Results revealed an irregular-shaped microparticles with a mean diameter ranging from 6.7 to 26.6 μm. Zeta potential and polydispersity index ranged from ?17.01 to 2.23 mV and 0.34 to 0.49, respectively. Percentage yield ranged between 70.4 and 81.5 per cent whereas encapsulation efficiency ranged between 74.2 ± 0.011 and 82.43 ± 0.77 per cent. Swelling index and solubility varied inversely with extract concentration, with a range of 54.4%–84.0% and 18.8%–22.2%, respectively. Antioxidant activities varied directly with the concentration of the extract. Minimum inhibitory and minimum bactericidal concentrations of the microcapsules against Gram-positive foodborne pathogens ranged from 0.19 to 3.12 and 0.19–12.25 mg/ml, respectively. The Higuchi model indicated a time-dependent, delayed, and regulated release of polyphenols at 37°C. The results suggested that alginate–CMC possessed good encapsulant properties that preserved the bioactive extract, thus might be employed for application of natural products in food systems.