Please wait a minute...
Applied Mathematics A Journal of Chinese Universities  2014, Vol. 29 Issue (2): 211-222    DOI:
    
Existence of single and multiple positive solutions of Neumann boundary value problem with a variable coefficient
YAN Dong-ming
 School of Mathematics and Statistics, Zhejiang University of Finance and Economics, Hangzhou, 310018, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  In this paper, the existence of single and multiple positive solutions of the Neumann boundary value problem $$ \left\{\begin{array}{ll} \ u''(t)+m^2(t)u(t)=f(t,u(t)), t\in(0,1),\\[2ex] u'(0)=0, u'(1)=0 \ \end{array} \right. $$ are studied. By using Dancer's global bifurcation theorem, the optimal sufficient conditions for the existence of single and multiple positive solutions of the above mentioned problem concerning the first eigenvalue of the relevant linear problem are obtained.

Key wordsNeumann boundary value problem      Dancer’s global bifurcation theorem      positive solutions      multiple positive solutions      first eigenvalue     
Received: 03 December 2013      Published: 29 July 2018
CLC:  O175.8  
Cite this article:

YAN Dong-ming. Existence of single and multiple positive solutions of Neumann boundary value problem with a variable coefficient. Applied Mathematics A Journal of Chinese Universities, 2014, 29(2): 211-222.

URL:

http://www.zjujournals.com/amjcua/     OR     http://www.zjujournals.com/amjcua/Y2014/V29/I2/211


变系数Neumann问题正解的存在性及多解性

应用Dancer全局分歧理论, 研究变系数Neumann边值问题 $$ \left\{\begin{array}{ll} \ u''(t)+m^2(t)u(t)=f(t,u(t)), t\in(0,1),\\[2ex] u'(0)=0, u'(1)=0 \ \end{array} \right. $$ 一个正解及多个正解的存在性, 其中 $m\in C[0,1],f:[0,1]\times[0,\infty)\to[0,\infty)$连续. 给出了此类问题有一个正解及多个正解存在的与其相应线性问题第一个特征值有关的充分条件, 该条件中所涉及的值是最优的.

关键词: 变系数Neumann问题,  全局分歧,  正解,  多解性,  第一特征值 
[1] WANG Jin-hua, XIANG Hong-jun. Existence of positive solutions for fractional boundary value problem with p-Laplacian operator in infinite interval[J]. Applied Mathematics A Journal of Chinese Universities, 2014, 29(2): 201-210.