Please wait a minute...
Applied Mathematics A Journal of Chinese Universities  2014, Vol. 29 Issue (2): 201-210    DOI:
    
Existence of positive solutions for fractional boundary value problem with p-Laplacian operator in infinite interval
WANG Jin-hua, XIANG Hong-jun
Department of Mathematics, Xiangnan University, Chenzhou 423000, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  By using the fixed-point theorem on cone, the authors consider the multiple positive solutions for $m$- point fractional boundary value problem with p-Laplacian operator in infinite interval, sufficient conditions for the existence of at least three positive solutions are obtained. Moreover, an example is given to show the effectiveness of the works.

Key wordsfractional p-Laplacian      infinite interval      boundary value problem      fixed-point theorem      positive solutions     
Received: 18 September 2013      Published: 29 July 2018
CLC:  O175.14  
Cite this article:

WANG Jin-hua, XIANG Hong-jun. Existence of positive solutions for fractional boundary value problem with p-Laplacian operator in infinite interval. Applied Mathematics A Journal of Chinese Universities, 2014, 29(2): 201-210.

URL:

http://www.zjujournals.com/amjcua/     OR     http://www.zjujournals.com/amjcua/Y2014/V29/I2/201


无穷区间上分数p-Laplacian方程边值问题正解的存在性

应用锥上的一个不动点定理, 讨论了一类分数p-Laplacian方程在无穷区间上的$m$点边值问题正解的多重性, 获得了该边值 问题至少存在三个正解的充分条件, 并举例说明了所得结果的有效性.

关键词: 分数p-Laplacian方程,  无穷区间,  边值问题,  不动点定理,  存在性 
[1] LI Chong, ZHANG Gui-ling, XIE Yong-hong. Boundary value problems for hypergenic functions[J]. Applied Mathematics A Journal of Chinese Universities, 2017, 32(2): 176-188.
[2] KONG Xiang-shan, LI Hai-tao, ZHAO Hong-xin, LV Xun-jing. Bifurcation of positive solutions for a class of integral boundary value problems of fractional differential equations[J]. Applied Mathematics A Journal of Chinese Universities, 2017, 32(1): 13-22.
[3] LUO Hua. Existence and uniqueness of solutions for a nonlinear V-time scales boundary value problem of dynamic system[J]. Applied Mathematics A Journal of Chinese Universities, 2017, 32(1): 1-12.
[4] ZHANG Shen-gui, LIU Hua. Multiplicity of solutions for Kirchhoff type equation involving the $p$-Laplacian-like operator[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(2): 153-160.
[5] WANG Jin-hua, XIANG Hong-jun. Existence of multiple positive solutions for a boundary value problem of fractional difference equation[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(2): 167-175.
[6] WEI Li, CHEN Rui. Study on the existence of non-trivial solution of one kind $p$-Laplacian-like Neumann boundary value problems and iterative schemes[J]. Applied Mathematics A Journal of Chinese Universities, 2015, 30(2): 180-190.
[7] LI Yao-hong. Positive solution for boundary value problem of a class of fractional differential system[J]. Applied Mathematics A Journal of Chinese Universities, 2015, 30(1): 109-116.
[8] SONG Li-mei. Positive solutions for boundary value problem of fractional differential equation with $p$-Laplacian operator[J]. Applied Mathematics A Journal of Chinese Universities, 2014, 29(4): 443-452.
[9] KONG Xiang-shan, LI Hai-tao. Solutions to two-point boundary value problems of fractional $p$-Laplacian systems[J]. Applied Mathematics A Journal of Chinese Universities, 2014, 29(3): 341-353.
[10] YAN Dong-ming. Existence of single and multiple positive solutions of Neumann boundary value problem with a variable coefficient[J]. Applied Mathematics A Journal of Chinese Universities, 2014, 29(2): 211-222.
[11] XU You-wei, YAO Jing-sun. A class of singularly perturbed boundary value problems for fourth order differential equations[J]. Applied Mathematics A Journal of Chinese Universities, 2014, 29(2): 180-184.