Please wait a minute...
Applied Mathematics A Journal of Chinese Universities  2015, Vol. 30 Issue (3): 271-279    DOI:
    
Exact solutions and blowup interfaces of Euler equations for Chaplygin gas on invariant subspaces
ZHU Chun-rong, ZHU Dan-xia, HUANG Shou-jun
College of Mathematics and Computer Science, Anhui Normal University, Wuhu 241000, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  By the invariant subspace method, the Euler equations for Chaplygin gas are reduced to finite-dimensional dynamical systems of first-order ordinary differential equations. Many interesting exact solutions, including finite-time blowup solution, global solution and time-periodic solution, are obtained. The unusual blowup interfaces of some solutions are described.

Key wordsinvariant subspace method      compressible Euler equations for Chaplygin gas      exact solution      blowup interface     
Received: 23 May 2014      Published: 27 May 2018
CLC:  O175.2  
Cite this article:

ZHU Chun-rong, ZHU Dan-xia, HUANG Shou-jun. Exact solutions and blowup interfaces of Euler equations for Chaplygin gas on invariant subspaces. Applied Mathematics A Journal of Chinese Universities, 2015, 30(3): 271-279.

URL:

http://www.zjujournals.com/amjcua/     OR     http://www.zjujournals.com/amjcua/Y2015/V30/I3/271


Chaplygin气体方程在不变子空间中的精确解和爆破界面

通过不变子空间方法, Chaplygin气体方程被约化为有限维动力系统. 它很多有意义的精确解被构造, 包括有限时间爆破解, 整体解和关于时间的周期解, 其中一些解的爆破界面被刻画.

关键词: 不变子空间方法,  Chaplygin气体方程,  精确解,  爆破界面 
[1] ZHU Chun-rong, CHU Pei-pei, HUANG Shou-jun. Separable solutions of geometric flow[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(2): 203-214.