Please wait a minute...
Applied Mathematics A Journal of Chinese Universities  2015, Vol. 30 Issue (3): 262-270    DOI:
    
Existence of solutions for a nonlocal boundary value problem of fractional differential equations with $p$-Laplacian operator
LU Liang1,2, GUO Xiu-feng1
1. College of Science, Hezhou University, Hezhou 542899, China
2. Guangxi Key Laboratories of Hybrid Computation and Integrated Circuit Design Analysis, Nanning 530006, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  By using the classical Schaefer's fixed point theorem, a class of nonlocal boundary value problems for nonlinear fractional differential equations with $p$-Laplacian operator are studied. Under some suitable assumptions, some new results on the existence of solutions are obtained. An example is given to show the applicability of the results.

Key wordsfractional differential equation      $p$-Laplace operator      fixed point theorems      multi-point nonlocal boundary conditions      existence of solution     
Received: 19 October 2014      Published: 27 May 2018
CLC:  O175.14  
Cite this article:

LU Liang, GUO Xiu-feng. Existence of solutions for a nonlocal boundary value problem of fractional differential equations with $p$-Laplacian operator. Applied Mathematics A Journal of Chinese Universities, 2015, 30(3): 262-270.

URL:

http://www.zjujournals.com/amjcua/     OR     http://www.zjujournals.com/amjcua/Y2015/V30/I3/262


带$p$-Laplacian算子的分数阶微分方程非局部边值问题解的存在性

利用经典的Schaefer不动点定理, 研究了一类带有$p$-Laplacian~算子的非线性分数阶微分方程非局部边值问题, 在适当的假设条件下, 得到了解的存在性结果. 并举例说明结果的应用.

关键词: 分数阶微分方程,  $p$-Laplacian算子,  不动点定理,  多点非局部边界,  解的存在性 
[1] KONG Xiang-shan, LI Hai-tao, ZHAO Hong-xin, LV Xun-jing. Bifurcation of positive solutions for a class of integral boundary value problems of fractional differential equations[J]. Applied Mathematics A Journal of Chinese Universities, 2017, 32(1): 13-22.