Please wait a minute...
Applied Mathematics A Journal of Chinese Universities  2015, Vol. 30 Issue (4): 389-398    DOI:
    
Solution to multiscale Asian option pricing model with the singular perturbation method
LI Hui-fang, BAO Li-ping
The school of Science, Hangzhou Dianzi University, Hangzhou 310018, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  A type of stochastic volatility model which includes fast-slow alternate multiple scales of high dimension Asian option pricing problem is discussed in this paper. According to Girsanov theorem and Radon-Nikodym, it realizes a transformation between expected return rate and no risk interest rate; Defining the new arithmetic average algorithm of path-dependent options and using Feynman-Kac’s formula, the Black-Scholes model is formed in which the risky assets of multiscale Asian option prices. A singular perturbation expansion is used to derive an approximation for multiscale Asian option pricing equation and the uniform valid estimation is derived.

Key wordsmultiple scales      Asian options      stochastic volatility      singular perturbation      remainder term estimation     
Received: 11 June 2015      Published: 19 May 2018
CLC:  O175.2  
Cite this article:

LI Hui-fang, BAO Li-ping. Solution to multiscale Asian option pricing model with the singular perturbation method. Applied Mathematics A Journal of Chinese Universities, 2015, 30(4): 389-398.

URL:

http://www.zjujournals.com/amjcua/     OR     http://www.zjujournals.com/amjcua/Y2015/V30/I4/389


多尺度高维亚式期权定价的奇摄动解

讨论了一类含有快慢变换尺度的高维亚式期权定价随机波动率模型. 根据Girsanov定理和Radon-Nikodym导数实现了期望回报率与无风险利率之间的转化; 定义路径依赖型的新算术平均算法, 借助Feynman-Kac公式, 得到了风险资产期权价格所满足的相应的Black-Scholes 方程, 运用奇摄动渐近展开方法, 得到了期权定价方程的渐近解, 并得到其一致有效估计.

关键词: 多尺度,  亚式期权,  随机波动率,  奇摄动,  余项估计 
[1] BAO Li-ping. A class of boundary value problem of singular perturbed semi-linear differential systems with discontinuous source term[J]. Applied Mathematics A Journal of Chinese Universities, 2017, 32(4): 413-422.
[2] BAO Li-ping. The asymptotic solution of a class of singular perturbed semi-linear delayed parabolic partial differential equation[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(3): 307-315.
[3] SUN Yu-dong, SHI Yi-min, TONG Hong. The pricing of step options under the nonlinear Black-Scholes model[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(3): 262-272.
[4] LI Zhi-guang, KANG Shu-gui. The pricing of geometric average Asian options under the nonlinear Black-Scholes model[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(1): 39-49.