Please wait a minute...
Applied Mathematics A Journal of Chinese Universities  2015, Vol. 30 Issue (4): 379-388    DOI:
    
Global stability of a delayed viral infection model with latent period and immune response
FU Jin-bo1, CHEN Lan-sun1,2, CHENG Rong-fu1
1. Minnan Science and Technology Institute Fujian Normal University, Quanzhou 362332, China
2. Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100080, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  In this paper, the dynamical behaviors of the time delayed viral infection model with latent period and CTL immune response are studied. The model describes the interaction of viral and two classes of target cells: CD4$^+$T cells and macrophages. By constructing suitable Lyapunov functionals, using the LaSalle invariance principle, it's shown that the basic repro\text{d}uctive amounts $R_{0}$ of CD4$^+$T cells and macrophages and the immune response reproductive $R_{*}$ of CD4$^+$T cells and macrophages CTL determine the global properties of the model. If $R_{0}\leq1$ , the virus is cleared. If $R_{0}>1$ , positive solutions approach to an immune-free equilibrium when $R_{*}\leq1$ , and to a positive equilibrium when $R_{*}>1$ . Thus the sufficient conditions for the global stability of the infection-free equilibrium , the immune-free equilibrium and the positive equilibrium are obtained.

Key wordsviral infection model      latent period      CTL immune response      time delay      equilibrium      global stability     
Received: 05 May 2015      Published: 19 May 2018
CLC:  O175.12  
Cite this article:

FU Jin-bo, CHEN Lan-sun, CHENG Rong-fu. Global stability of a delayed viral infection model with latent period and immune response. Applied Mathematics A Journal of Chinese Universities, 2015, 30(4): 379-388.

URL:

http://www.zjujournals.com/amjcua/     OR     http://www.zjujournals.com/amjcua/Y2015/V30/I4/379


具有潜伏期和免疫应答的时滞病毒感染模型的全局稳定性

研究了具有潜伏期和CTL免疫应答的时滞病毒感染模型的动力学行为. 模型描述了病毒和两类靶细胞的相互作用: CD4$^{+}$T淋巴细胞与巨噬细胞. 通过构造适当的Lyapunov泛函, 使用LaSalle不变性原理, 证明了CD4$^{+}$T淋 巴细胞和巨噬细胞的基本再生总数$R_{0}$, CD4$^{+}$T淋巴细胞和巨噬细胞的CTL免疫再生总数$R_{*}$决定了模型的全局性态. 若$R_{0}\leq1$ , 病毒在体内清除.若$R_{0}>1$, 正解在$R_{*}\leq1$时趋于无免疫平衡点, 在$R_{*}>1$时趋于正平衡点.获得了无病平衡点、无免疫平衡点和正平衡点全局渐近稳定的充分条件.

关键词: 病毒感染模型,  潜伏期,  CTL免疫反应,  时滞,  平衡点,  全局稳定性 
[1] CAI Guang-hui, XU Jun, YING Xue-hai. The Berry-Esseen bound for equilibrium distribution by Stein method[J]. Applied Mathematics A Journal of Chinese Universities, 2017, 32(3): 277-282.
[2] LI Shao-e, FENG Wei-zhen. Practical stability of impulsive switched systems with time delay by Lyapunov-Razumikhin method[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(3): 327-337.
[3] YANG Yu, ZHOU Jin-ling. Global stability of a diffusive virus dynamics model with Beddington-DeAngelis incidence function[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(2): 161-166.
[4] WANG Zhong-xing. Sample average method for solving stochastic generalized Nash equilibrium problem[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(1): 57-62.