Please wait a minute...
高校应用数学学报  2019, Vol. 34 Issue (2): 142-    
    
l^p-值Wiener过程子列C-R型增量在H?older范数下的泛函样本轨道性质
危启才, 王文胜
1. 武汉轻工大学数学与计算机学院, 湖北武汉430023;
2. 杭州电子科技大学经济学院, 浙江杭州310018
Functional sample path properties of subsequence's C-R increments for l^p-valued Wiener processes in H?older norm
WEI Qi-cai, WANG Wen-sheng
1. School of Math. & Comput. Sci., Wuhan Polytechnic Univ., Wuhan 430023, China;
2. School of Economics, Hangzhou Dianzi Univ., Hangzhou 310018, China
 全文: PDF(247 KB)  
摘要: 得到了l^p-值Wiener过程(1 · p < 1)子列C-R型增量, 在H?older范数下的泛函样本轨道性质, 推广了l^p-值Wiener过程的泛函重对数定律.
关键词: lp-值Wiener过程; 泛函样本轨道性质; 子列C-R型增量; H?older范数.
关键词: l^p-值Wiener过程 泛函样本轨道性质 子列C-R型增量 H?older范数    
Abstract: This paper obtains the functional sample path properties of subsequence's C-R increments
for l^p-valued, 1 · p < 1, Wiener processes. By which, the functional laws of iterated logarithm
for l^p-valued Wiener processes are generalized.
Key words: l^p-valued Wiener processes    functional sample path properties    subsequence's C-R increments    H?older norm
出版日期: 2019-07-05
CLC:  O211.6  
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
危启才
王文胜

引用本文:

危启才, 王文胜. l^p-值Wiener过程子列C-R型增量在H?older范数下的泛函样本轨道性质[J]. 高校应用数学学报, 2019, 34(2): 142-.

WEI Qi-cai, WANG Wen-sheng. Functional sample path properties of subsequence's C-R increments for l^p-valued Wiener processes in H?older norm. Applied Mathematics A Journal of Chinese Universities, 2019, 34(2): 142-.

链接本文:

http://www.zjujournals.com/amjcua/CN/        http://www.zjujournals.com/amjcua/CN/Y2019/V34/I2/142

[1] 危启才. $k$-维Brown运动子列$C$-$R$型增量在Holder范数下的泛函样本轨道性质[J]. 高校应用数学学报, 2015, 30(3): 355-366.