Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2019, Vol. 45 Issue (6): 746-750    DOI: 10.3785/j.issn.1008-9209.2019.03.131
Animal sciences & veterinary medicine     
Comparison of genetic parameter evaluation methods for body mass of the five-week-old layer
Jun GUO(),Liang QU,Taocun DOU,Manman SHEN,Yuping HU,Kehua WANG()
Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Sciences, Yangzhou 225125, Jiangsu, China
Download: HTML   HTML (   PDF(1218KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

This study aimed to investigate the selection potential for early body mass in a layer resource population, and to compare three inference methods based on their efficiency and accuracy, including restricted maximum likelihood method (REML), Markov chain Monte Carlo method (MCMC), and integrated nested Laplace approximations (INLA). The genetic parameters were estimated by animal models. The layers were collected from a resource population, which were set up by Dongxiang blue-shelled layers crossbred with White Leghorn layers. The total amount of layers, made up of three generations, were 5 405. The phenotypic variance was dissected with the REML and Bayesian approaches. The results showed: 1) The heritability on body mass of the five-week-old layers ranged from 0.49 to 0.59, depending on the estimation method. 2) The MCMC method seemed a slow and low accuracy for genetic evaluation. 3) The use of INLA method could calculate the standard error for variance components, without approximations or use of normality assumptions. 4) Due to the advantage of computation time and accuracy, REML remained the best practical choice for the genetic evaluation in the poultry production. Considering the abundance of genetic potential in the resource population of five-week-old layer, it is better to select on early body mass with animal model.



Key wordsBayesian approach      animal model      layer      restricted maximum likelihood method      heritability     
Received: 13 March 2019      Published: 20 January 2020
CLC:  S 831  
Corresponding Authors: Kehua WANG     E-mail: guojun.yz@gmail.com;sqbreeding@126.com
Cite this article:

Jun GUO,Liang QU,Taocun DOU,Manman SHEN,Yuping HU,Kehua WANG. Comparison of genetic parameter evaluation methods for body mass of the five-week-old layer. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(6): 746-750.

URL:

http://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2019.03.131     OR     http://www.zjujournals.com/agr/Y2019/V45/I6/746


蛋鸡5周龄体质量遗传参数及估计方法比较

为调查蛋鸡资源群体早期体质量选育潜力,比较了限制最大似然法、马尔科夫链蒙特卡洛方法和积分嵌套拉普拉斯逼近方法的效率和结果准确性,应用动物模型估计遗传参数。试验鸡来自东乡绿壳蛋鸡与白来航鸡F2资源群体,包括3个世代总计5 405只鸡,采用限制最大似然法和贝叶斯法剖分5周龄蛋鸡体质量表型方差。结果表明:蛋鸡F2资源群体5周龄体质量遗传力为0.49~0.59,具体因算法而定;马尔科夫链蒙特卡洛方法计算用时较长、准确性稍差;积分嵌套拉普拉斯逼近方法能够准确给出方差组分的标准误,而不是近似的或依据正态分布推测的;限制最大似然法计算用时短,结果准确,目前为最佳选择。由于蛋鸡资源群体5周龄蛋鸡体质量选育潜力大,将来可以通过个体选育获取遗传进展。


关键词: 贝叶斯法,  动物模型,  蛋鸡,  限制最大似然法,  遗传力 
Fig. 1 Boxplot on the body mass for Dongxiang blue-shelled layers (DXBS) crossbred with White Leghorn layers (WL) at the five-week-old age

算法

Algorithm

加性遗传方差

Additive

genetic variance

残差

Residual variance

遗传力

Heritability

REML0.26±0.010.26±0.010.50±0.03
MCMC0.39±0.060.28±0.050.59±0.03
INLA0.26±0.020.27±0.010.49±0.03
Table 1 Additive genetic variance, residual variance and heritability on body mass of the five-week-old layer
算法 AlgorithmINLAMCMCREML
INLA1.0000.8080.996
MCMC0.8691.0000.842
REML0.9890.8661.000
Table 2 Correlation analysis on estimated breeding values with REML, MCMC and INLA approaches
Fig. 2 Trace and density plots of heritability on body mass of the five-week-old layer
[1]   HILL W G. Applications of population genetics to animal breeding, from Wright, Fisher and Lush to genomic prediction. Genetics, 2014,196(1):1-16.
[2]   GIANOLA D, ROSA G J M. One hundred years of statistical developments in animal breeding. Annual Review of Animal Biosciences, 2015,3(1):19-56.
[3]   PATTERSON H D, THOMPSON R. Recovery of inter-block information when block sizes are unequal. Biometrika, 1971,58(3):545-554.
[4]   THOMPSON R. Estimation of quantitative genetic parameters. Proceedings of the Royal Society B: Biological Sciences, 2008,275(1635):679-686.
[5]   SORENSEN D, GIANOLA D. Likelihood, Bayesian, and MCMC Methods in Quantitative Genetics. New York, US: Springer Science & Business Media, 2002.
[6]   RUE H, MARTINO S, CHOPIN N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2009,71(2):319-392.
[7]   HOLAND A M, STEINSLAND I, MARTINO S, et al. Animal models and integrated nested Laplace approximations. G3: Genes, Genomes, Genetics, 2013,3(8):1241-1251.
[8]   RUE H, RIEBLER A, S?RBYE S H, et al. Bayesian computing with INLA: a review. Annual Review of Statistics and Its Application, 2017,4(1):395-421.
[9]   ANDERSON K E, HAVENSTEIN G B, JENKINS P K, et al. Changes in commercial laying stock performance, 1958—2011: thirty-seven flocks of the North Carolina random sample and subsequent layer performance and management tests. World’s Poultry Science Journal, 2013,69(3):489-514.
[10]   NORRIS D, NGAMBI J W. Genetic parameter estimates for body weight in local Venda chickens. Tropical Animal Health and Production, 2006,38(7/8):605-609.
[11]   NAVARRO P, VISSCHER P, CHATZIPLIS D, et al. Genetic parameters for blood oxygen saturation, body weight and breast conformation in 4 meat-type chicken lines. British Poultry Science, 2006,47(6):659-670.
[12]   MANIATIS G, DEMIRIS N, KRANIS A, et al. Model comparison and estimation of genetic parameters for body weight in commercial broilers. Canadian Journal of Animal Science, 2013,93(1):67-77.
[13]   WICKHAM H. ggplot2: Elegant Graphics for Data Analysis. New York, US: Springer, 2016.
[14]   WOLAK M E. Nadiv: an R package to create relatedness matrices for estimating non-additive genetic variances in animal models. Methods in Ecology and Evolution, 2012,3(5):792-796.
[15]   MEYER K. Estimation of genetic parameters: it takes three to tango. Journal of Animal Breeding and Genetics, 2008,125(6):361-362.
[16]   HADFIELD J D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. Journal of Statistical Software, 2010,33(2):22.
[17]   BROWNE W J, DRAPER D. A comparison of Bayesian and likelihood-based methods for fitting multilevel models. Bayesian Analysis, 2006,1(3):473-514.
[18]   MANIATIS G, DEMIRIS N, KRANIS A, et al. Comparison of inference methods of genetic parameters with an application to body weight in broilers. Archives Animal Breeding, 2015,58(2):277-286.
[19]   MATHEW B, HOLAND A M, KOISTINEN P, et al. Reparametrization-based estimation of genetic parameters in multi-trait animal model using integrated nested Laplace approximation. Theoretical and Applied Genetics, 2016,129(2):215-225.
[20]   KAPELL D N R G, HILL W G, NEETESON A M, et al. Genetic parameters of foot-pad dermatitis and body weight in purebred broiler lines in 2 contrasting environments. Poultry Science, 2012,91(3):565-574.
[1] WENG Yuhao, CHEN Ming. Application of multilayer network in protein-protein interaction networks (PPI) of rice and cancer[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(1): 15-23.
[2] Zhao Wei, Yang Mingxiu, Chen Lin, Wang Lei, Song Naiping, Yang Xinguo. Structure and dynamics of herbaceous layer vegetation of artificial Caragana intermedia shrublands in desert steppe.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(6): 723-731.
[3] Mao Dongxia, Guo Dandan, Wu Lingling, Tian Xiaoxue, Zhang Shengxiang, Liu Tao, Ma Xiaokui. Isolation and identification of a matrine-producing fungal strain from petroleum-contaminated soil[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(5): 586-592.
[4] Deng Xunfei, Chen Xiaojia, Ma Wanzhu, Wang Fei, Ren Zhouqiao, Qin Fangjin, Lü Xiaonan. Variability of soil organic carbon in plough layers and its impact factors in a coastal reclamation area on  south coast of Hangzhou Bay[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(03): 349-357.
[5] CHEN Lian1, LUO Qi-hui1,2, ZHANG Yao1, CHEN Zheng-li1,2*, CHENG An-chun1,2,3, ZENG Wen2. Expression of secretory immunoglobulin A in gastrointestinal tract of streptococcal pneumonia rhesus monkey[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(6): 675-683.
[6] ZHANG Chundi, ZHANG Shuai, NIE Xinjun, LUO Ancheng,YANG Fei,ZHENG Zhong. Treatment of piggery wastewater  using multi-soil-layering system.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(3): 336-346.
[7] LUO An-cheng,ZHANG Chun-di,DU Ye-hong,SHEN Qin-qin. Wastewater treatment study using multi-soil-layering system[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2011, 37(4): 460-464.