Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2019, Vol. 45 Issue (1): 8-13    DOI: 10.3785/j.issn.1008-9209.2018.02.012
Crop cultivation & physiology     
Physiological and biochemical indexes and waxy gene expression of wax-deficient mutant in barley under drought stress
Hao ZHENG(),Xiachen Lü,Saiqiong TAN,Xueli LU,Xian ZHANG,Xiaoqin ZHANG(),Dawei XUE()
1. College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
Download: HTML   HTML (   PDF(861KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

The wild-type (WT) barley ZJU3 and wax-deficient mutant P1 were used as experimental materials. Using the solution culture methods, when the seedlings growing to two leaves, drought stress was simulated by different concentrations of PEG (macrogol)-6000 to compare the physiological and biochemical indexes of the mutant and wild type seedlings. At the same time, the expressions of 10 waxy-related genes were detected by real-time polymerase chain reaction (PCR). The results showed that under drought stress, the activities of superoxide dismutase (SOD) and peroxidase (POD) increased first and then decreased, and the proline (Pro) content increased continuously, and the malondialdehyde (MDA) content increased, indicating that the loss of barley wax powder would reduce its drought resistance. Among the 10 waxy genes selected, P1 had six down-regulated genes with respect to ZJU3, and three genes were up-regulated. Only one gene expression was not significantly different. The study preliminarily reveals the characteristics of the mutant and its advantages in drought resistance.



Key wordsbarley      drought stress      physiological and biochemical index      waxy gene      expression pattern     
Received: 01 February 2018      Published: 28 March 2019
CLC:  S 512.3  
  Q 945  
Corresponding Authors: Xiaoqin ZHANG,Dawei XUE     E-mail: 1074137182@qq.com;xiaoqinzhang@163.com;dwxue@126.com
Cite this article:

Hao ZHENG,Xiachen Lü,Saiqiong TAN,Xueli LU,Xian ZHANG,Xiaoqin ZHANG,Dawei XUE. Physiological and biochemical indexes and waxy gene expression of wax-deficient mutant in barley under drought stress. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(1): 8-13.

URL:

http://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2018.02.012     OR     http://www.zjujournals.com/agr/Y2019/V45/I1/8


干旱胁迫下大麦蜡质缺失突变体的生理生化指标及蜡质基因表达

以野生型大麦品种浙农大3号(ZJU3)和蜡粉缺失突变体P1为试验材料,采用溶液培养法,待幼苗生长到2叶时,用不同浓度的聚乙二醇6000(PEG-6000)模拟干旱胁迫,比较大麦蜡粉缺失突变体和野生型幼苗的生理生化指标响应及10个蜡质相关基因的表达情况。结果表明:在干旱胁迫下,超氧化物歧化酶、过氧化物酶活性先上升后下降,脯氨酸含量持续上升,丙二醛含量上升,表明大麦蜡粉的缺失会降低其抗旱能力。选取的10个蜡质基因中,P1相对于ZJU3有6个基因表达下调,3个基因表达上调,1个基因表达未见明显差异。本研究初步揭示了蜡粉缺失突变体的特性及野生型较蜡粉缺失突变体在抗旱性上的优势。


关键词: 大麦,  干旱胁迫,  生理生化指标,  蜡质基因,  表达模式 

引物名称

Primer name

正向引物序列(5′→3′)

Forward primer sequence (5′→3′)

反向引物序列(5′→3′)

Reverse primer sequence (5′→3′)

FISH10-F/RGCAGTTCCGCAGGCTCTTCTCCTTGTTGCTCCCATCCC
CER60-F/RTCGGCTTCGGCTCCGGGTTCACGGGGTAGCGGTGGACGCA
DWA1-F/RGTGCTTGCTTCTATGAAACTGATTTGACTCCACTCGTTGACA
MYB94-F/RGCCCAGTCCCTGCGTCCATGCCGCGTTCTCAGCTCCC
CER6-F/RTAGCAGACGGGCGATGGAAGTTGGCGCTCATACACGGG
WIN1-F/RCGGGAAAGGCAATGTGGTGCTTCAAGAGCAGGTAGAC
WRKY57-F/RCCAACCGCTCAAAACCCTCTGGCTGTGTAGCTCGCAACTT
CER10-F/RACCCCCGCCATAGGTTCCAGGACACGACGGAGACCTTCAT
WIN2-F/RTTTCTCGACCAGCAGCCCCCTTCAGTTGCCCGGCACGACC
LACS1-F/RGCATGGTTTTAGTTATCAGTCGTGCTAGGTCCCAGTGTTTC
Actin-F/RTGGATCGGAGGGTCCATCCTGCACTTCCTGTGGACGATCGCTG
Table 1 Primers of barley wax synthesis related genes
Fig. 1 Antioxidant enzyme activities of P1 and ZJU3 seedlings under drought stress
Fig. 2 Pro and MDA contents of P1 and ZJU3 seedlings under drought stress
Fig.3 Expression of waxy genes of mutant P1 and wild-type ZJU3 seedlings under drought stress
[1]   柯贞进,尹美强,温银元等.干旱胁迫下聚丙烯酰胺浸种对谷子种子萌发及幼苗期抗旱性的影响.核农学报,2015,29(3):563-570.
KEZ J, YINM Q, WENY Y, et al. Effects of polyacrylamide seed soaking on seed germination and drought resistance of millet (Setaria italica) seedings under drought stress. Journal of Nuclear Agricultural Sciences, 2015,29(3):563-570. (in Chinese with English abstract)
[2]   SCHULTED, CLOSET J, GRANERA, et al. The international barley sequencing consortium:at the threshold of efficient access to the barley genome. Plant Physiology, 2009,149:142-147.
[3]   XUED W, ZHANGX Q, LUX L, et al. Molecular and evolutionary mechanisms of cuticular wax for plant drought tolerance. Frontiers in Plant Science, 2017,8:621.
[4]   张海禄,齐军仓,王祥军.干旱胁迫对大麦叶片表皮蜡质含量及主要生理指标的影响.麦类作物学报,2012,32(2):280-283.
ZHANGH L, QIJ C, WANGX J. Effects of water stress on epicuticular wax content and main physiological parameters of barley. Journal of Triticeae Crops, 2012,32(2):280-283. (in Chinese with English abstract)
[5]   BOURDENXB, BERNARDA, DOMERGUEF, et al. Overexpression of Arabidopsis ECERIFERUM1 promotes wax very-long-chain alkane biosynthesis and influences plant response to biotic and abiotic stresses. Plant Physiology, 2011,156(1):29-45.
[6]   张晓勤,薛大伟,周伟辉,等.用甲基磺酸乙酯(EMS)诱变的大麦浙农大3号突变体的筛选和鉴定.浙江大学学报(农业与生命科学版),2011,37(2):169-174.
ZHANGX Q, XUED W, ZHOUW H, et al. Screening and identification of the mutants from two-row barley cultivar ZJU3 induced by ethyl methanesulfonate (EMS). Journal of Zhejiang University (Agriculture and Life Sciences), 2011,37(2):169-174. (in Chinese with English abstract)
[7]   朱双艳.大麦幼苗叶片表皮蜡质沉积与膜脂过氧化的关系及其对表皮透性影响的研究.新疆,石河子:石河子大学,2014:1-10.
ZHUS Y. Study on the relationship of epicuticular wax deposition and membrane peroxidation in barley seeding leaves and its impacts on epidermal permeability. Shihezi,Xinjiang Uyghur Autonomous Region: Shihezi University, 2014:1-10. (in Chinese with English abstract)
[8]   SINGHT N, ASPINALLD, PALEGL G. Proline accumulation and varietal adaptability to drought in barley: a potential metabolic measure of drought resistance. Nature New Biology, 1972,236(67):188-190.
[9]   刘训财,陈华锋,井立文,等.盐胁迫对中国春-百萨燕麦草双二倍体SOD、CAT活性和MDA含量的影响.安徽农学通报,2009,15(8):43-46.
LIUX C, CHENH F, JINGL W, et al. Effects of salt stress on SOD/CAT activities and malondialdehyde (MDA) content of Triticum aestivum Thinopyrum bessarabicum diploid. Anhui Agricultural Science Bulletin, 2009,15(8):43-46. (in Chinese with English abstract)
[10]   SALINM L. Toxic oxygen species and protective systems of the chloroplast. Physiologia Plantarum, 1988,72(3):681-689.
[11]   余玲,王彦荣,GARNETTT,等.紫花苜蓿不同品种对干旱胁迫的生理响应.草业学报,2006,15(3):75-85.
YUL, WANGY R, GARNETTT, et al. A study on physiological responses of varieties of Medicago sativa and their relationship with the drought resistance capacity under drought stress. Acta Prataculturae Sinica, 2006,15(3):75-85. (in Chinese with English abstract)
[12]   李予霞,崔百明,董新平,等.PEG处理下葡萄试管苗脯氨酸及内源ABA含量变化的研究.石河子大学学报(自然科学版),2004,22(1):43-45.
LIY X, CUIB M, DONGX P, et al. A study on proline and ABA content changes under water stress induced by PEG. Journal of Shihezi University (Natural Science), 2004,22(1):43-45. (in Chinese with English abstract)
[13]   LEE S B, JUNGS J, GO Y S, et al. Two Arabidopsis 3-ketoacyl CoA synthase genes, KCS20 and KCS2/DAISY, are functionally redundant in cuticular wax and root suberin biosynthesis but differentially controlled by osmotic stress. Plant Journal, 2009(60):462-475.
[14]   DUBOSC, STRACKER, GROTEWOLDE, et al. MYB transcription factors in Arabidopsis. Trends in Plant Science, 2010,15(10):573-581.
[15]   ZHAOL, KATAVICV, LIF, et al. Insertional mutant analysis reveals that long-chain acyl-CoA synthetase 1 (LACS1), but not LACS8, functionally overlaps with LACS9 in Arabidopsis seed oil biosynthesis. The Plant Journal, 2010,64(6):1048-1058.
[16]   ZHUX Y, XIONGL Z. Putative megaenzyme DWA1 plays essential roles in drought resistance by regulating stress-induced wax deposition in rice. Proceedings of the National Academy of Sciences of the United States of America, 2013,110(44):17790-17795.
[17]   BROUNP, POINDEXTERP, OSBORNEE. WIN1, a transcriptional activator of epidermal wax accumulation in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2004,101(3):4706-4711.
[18]   SCHNURRJ, SHOCKEYJ, BROWSEJ. The acyl-CoA synthetase encoded by LACS2 is essential for normal cuticle development in Arabidopsis. Plant Cell, 2004,16(3):629-642.
[19]   ZHENGH Q, ROWLANDO, KUNSTL. Disruptions of the Arabidopsis enoyl-CoA reductase gene reveal an essential role for very-long chain-fatty acid synthesis in cell expansion during plant morphogenesis. Plant Cell, 2005,17:1467-1481.
[20]   LANGERT. AAA proteases: cellular machines for degrading membrane proteins. Trends in Biochemical Sciences, 2000,25(5):247-251.
[1] SHAO Shanlu, YANG Lizhi, TAO Chenyue, HE Anguo, YING Yeqing. Effects and mechanism of paclobutrazol on drought resistance of Phyllostachys edulis seedlings[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(5): 565-572.
[2] PAN Weihuai, PAN Jianwei, SHOU Jianxin, GUO Tianrong, MO Yiwei. Different effects of aluminum toxicity on primary roots of two barley cultivars with different aluminum-tolerance[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(3): 335-342.
[3] BEGUM Mahfuj Ara, SHI Xiaoxiao, BAI Yueliang, JIANG Yandong, ZHOU Wenwu, MAO Cungui, ZHU Zengrong. Molecular cloning and characterization of a serine palmitoyltransferase gene from rice (Oryza sativa) and its gene expression in defense response to brown planthopper[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(3): 365-372.
[4] WANG Yihang, ZHAO Luyao, WANG Guoming, ZHU Aiyi. Physiological responses in Neolitsea sericea seedlings to drought stress[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(5): 543-551.
[5] XU Kangkang, DING Tianbo, YAN Yi, LI Can, YANG Wenjia. Expression analysis of glutathione S-transferase genes in Lasioderma serricorne (Coleoptera: Anobiidae) subjected to CO2-enriched atmosphere[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(5): 599-607.
[6] XIN Fumei, JIA Liming, YANG Xiaolin, ZANG Jiancheng. Effects of drought stress on characteristics of water consumption and photosynthesis of the main shrub species in Lhasa semi-arid valley[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(5): 617-.
[7] XIN Fumei, YANG Xiaolin, ZHAO Kentian, Luosangzhuoma. Effect of drought stress on characteristics of water consumption and photosynthesis for main arbor species in semi-arid valley of Lhasa.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(2): 199-208.
[8] XU Qinglong, LIU Xiaomin, XU Xiaobing, LI Qingqing, ZHANG Hong, XIAO Jiaxin. Effects of four arbuscular mycorrhizal fungi on tolerance of Vaccinium corymbosum to drought stress[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(04): 427-434.
[9] Zhu Bo, Zeng Jianbin, Wu Dezhi, Cai Shengguan, Yang Li’na, Zhang Guoping*. Identification and physiological characterization of low potassium tolerant germplasm in Tibetan Plateau annual wild barley[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2014, 40(2): 165-174.
[10] Yang Li’na, Hu Hongliang, Zhu Bo, Jin Xiaoli, Wu Feibo, Zhang Guoping*. Genotypic variations of N use efficiency in Tibetan wild and cultivated barleys[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2014, 40(2): 155-164.
[11] GUO Tian-rong*,PAN Wei-huai. Alleviating effect of 6-kinetin spraying on aluminum toxicity in barley seedlings[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(6): 709-714.
[12] . Effects of drought stress on leaf photosynthetic physiological charateristics in sweet cherry seedlings grafted on four different rootstocks[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(5): 585-592.
[13] ZHANG Xiao-qin,XUE Da-wei,ZHOU Wei-hui,WU Fei-bo,ZHANG Guo-ping. Screening and identification of the mutants from tworow barley cultivar ZJU3 induced by ethyl methane sulfonate[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2011, 37(2): 169-174.
[14] FAN Cheng-Li, XU Zi-Rong, WANG Lei-Jie. [J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2009, 35(4): 444-449.