Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2016, Vol. 17 Issue (4): 365-374    DOI: 10.1631/FITEE.1500272
    
A high precision visual localization sensor and its working methodology for an indoor mobile robot
Feng-yu Zhou, Xian-feng Yuan, Yang Yang, Zhi-fei Jiang, Chen-lei Zhou
School of Control Science and Engineering, Shandong University, Jinan 250061, China; School of Information Science and Engineering, Shandong University, Jinan 250100, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  To overcome the shortcomings of existing robot localization sensors, such as low accuracy and poor robustness, a high precision visual localization system based on infrared-reflective artificial markers is designed and illustrated in detail in this paper. First, the hardware system of the localization sensor is developed. Secondly, we design a novel kind of infrared-reflective artificial marker whose characteristics can be extracted by the acquisition and processing of the infrared image. In addition, a confidence calculation method for marker identification is proposed to obtain the probabilistic localization results. Finally, the autonomous localization of the robot is achieved by calculating the relative pose relation between the robot and the artificial marker based on the perspective-3-point (P3P) visual localization algorithm. Numerous experiments and practical applications show that the designed localization sensor system is immune to the interferences of the illumination and observation angle changes. The precision of the sensor is ±1.94 cm for position localization and ±1.64° for angle localization. Therefore, it satisfies perfectly the requirements of localization precision for an indoor mobile robot.

Key wordsMobile robot      Localization sensor      Visual localization      Infrared-reflective marker      Embedded system     
Received: 21 August 2015      Published: 05 April 2016
CLC:  TP242.6  
Cite this article:

Feng-yu Zhou, Xian-feng Yuan, Yang Yang, Zhi-fei Jiang, Chen-lei Zhou. A high precision visual localization sensor and its working methodology for an indoor mobile robot. Front. Inform. Technol. Electron. Eng., 2016, 17(4): 365-374.

URL:

http://www.zjujournals.com/xueshu/fitee/10.1631/FITEE.1500272     OR     http://www.zjujournals.com/xueshu/fitee/Y2016/V17/I4/365


一种室内移动机器人高精度视觉定位传感器及其工作原理

目的:高精度定位与导航是室内移动机器人高质量完成服务任务的基本前提。但现有的定位传感器大多难以满足服务机器人的室内定位精度要求。为了克服现有的移动机器人定位传感器定位精度低、鲁棒性差的问题,本文设计了一种基于红外反射人工标签的嵌入式视觉定位传感器,并提出了一种新颖的概率型视觉定位方法。
创新点:设计了一种高精度嵌入式视觉定位传感器,提出了一种概率型视觉定位方法。
方法:首先,设计了视觉定位传感器的硬件系统;然后,设计了一种红外反射标签,并给出了红外标签识别及置信度建模的方法;最后,利用P3P定位方法计算出机器人与红外标签的相对位置关系,并进一步解算得到机器人在世界坐标系下的位姿,实现了机器人高精度概率型视觉定位。
结论:通过多组实验证明了所设计的机器人定位传感器受光线及视角影响小,位置定位精度为±1.94 cm,角度定位精度为±1.64°,满足了室内移动机器人的定位精度要求。

关键词: 移动机器人,  定位传感器,  视觉定位,  红外标签,  嵌入式系统 
[1] Hamza Khan, Jamshed Iqbal, Khelifa Baizid, Teresa Zielinska. Longitudinal and lateral slip control of autonomous wheeled mobile robot for trajectory tracking[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(2): 166-172.
[2] Enkhbaatar Tumenjargal, Luubaatar Badarch, Hyeokjae Kwon, Woonchul Ham. Embedded software and hardware implementation system for a human machine interface based on ISOAgLib[J]. Front. Inform. Technol. Electron. Eng., 2013, 14(3): 155-166.
[3] Xin Ma, Ya Xu, Guo-qiang Sun, Li-xia Deng, Yi-bin Li. State-chain sequential feedback reinforcement learning for path planning of autonomous mobile robots[J]. Front. Inform. Technol. Electron. Eng., 2013, 14(3): 167-178.
[4] Ozoemena Anthony Ani, He Xu, Yi-ping Shen, Shao-gang Liu, Kai Xue. Modeling and multiobjective optimization of traction performance for autonomous wheeled mobile robot in rough terrain[J]. Front. Inform. Technol. Electron. Eng., 2013, 14(1): 11-29.
[5] Jian Bao, Yu Chen, Jin-shou Yu. A regeneratable dynamic differential evolution algorithm for neural networks with integer weights[J]. Front. Inform. Technol. Electron. Eng., 2010, 11(12): 939-947.
[6] Fan Yang, Shi-rong Liu, Fei Liu. Cooperative transport strategy for formation control of multiple mobile robots[J]. Front. Inform. Technol. Electron. Eng., 2010, 11(12): 931-938.