Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2016, Vol. 17 Issue (3): 224-236    DOI: 10.1631/FITEE.1500079
    
基于量子原胞自动机的纳米通信可逆低功耗奇偶生成器与奇偶校验器设计
Jadav Chandra Das, Debashis De
Department of Computer Science and Engineering, West Bengal University of Technology, Kolkata 700064, India; Department of Physics, University of Western Australia, Crawley WA 6009, Australia
Quantum-dot cellular automata based reversible low power parity generator and parity checker design for nanocommunication
Jadav Chandra Das, Debashis De
Department of Computer Science and Engineering, West Bengal University of Technology, Kolkata 700064, India; Department of Physics, University of Western Australia, Crawley WA 6009, Australia
 全文: PDF 
摘要: 目的:量子原胞自动机(QCA)是可逆计算领域的新兴方向。QCA可用于设计纳米级别的电路。在纳米通信领域,接收信号差错检测及校正是一个重要环节。同时,器件密度和功率耗散是纳米通信系统的关键问题。本文利用QCA的低器件密度和超低功耗特性,助力低功耗微纳级别可逆奇偶发生与校验器的设计。
创新点:基于QCA,第一次实现了使用费曼门的可逆低功耗奇偶生成器和奇偶校验器设计。
方法:基于本文提出的奇偶生成器和奇偶校验器电路,设计了一种纳米通信系统,并研究了传输中接收信号的差错检测。1.在QCA中设计可逆费曼门;2.在等量子成本的基础上,使用费曼门实现可逆奇偶生成与可逆奇偶校验电路;3.在相同量子成本和无用值的基础上,使用可逆奇偶生成器与校验器设计纳米通信系统;4.首次在QCA中实现可逆奇偶生成器、奇偶校验器与纳米通信电路;5.对可逆电路及其QCA布局进行量子成本分析;6.在面积、延迟和胞元计数等方面比对所述QCA费曼门与现有费曼门电路;7.估算所述设计的能量耗散;8.使用热随机性,观察输出胞元的极性,测量电路的可靠性。
结论:本文所提出的QCA费曼门在面积、原胞计数和延迟方面,超过了现有费曼门的指标水平。通过计算、比对传统可逆电路及其相应的QCA布局,证明QCA电路具有极低的量子成本。通过估计QCA电路的功率耗散,证明QCA微纳器件是可逆电路的可行平台。通过在热随机性下分析QCA电路的可靠性,证明所述电路的工作有效性。通过比对仿真结果与理论值,证明所述电路的精度。所述电路可以用于设计更为复杂的低功率微纳无损耗纳米通信系统(例如微纳发射器和微纳接收器)。
关键词: 量子原胞自动机(QCA)奇偶生成器奇偶校验器费曼门纳米通信功率耗散    
Abstract: Quantum-dot cellular automata (QCA) is an emerging area of research in reversible computing. It can be used to design nanoscale circuits. In nanocommunication, the detection and correction of errors in a received message is a major factor. Besides, device density and power dissipation are the key issues in the nanocommunication architecture. For the first time, QCA-based designs of the reversible low-power odd parity generator and odd parity checker using the Feynman gate have been achieved in this study. Using the proposed parity generator and parity checker circuit, a nanocommunication architecture is proposed. The detection of errors in the received message during transmission is also explored. The proposed QCA Feynman gate outshines the existing ones in terms of area, cell count, and delay. The quantum costs of the proposed conventional reversible circuits and their QCA layouts are calculated and compared, which establishes that the proposed QCA circuits have very low quantum cost compared to conventional designs. The energy dissipation by the layouts is estimated, which ensures the possibility of QCA nano-device serving as an alternative platform for the implementation of reversible circuits. The stability of the proposed circuits under thermal randomness is analyzed, showing the operational efficiency of the circuits. The simulation results of the proposed design are tested with theoretical values, showing the accuracy of the circuits. The proposed circuits can be used to design more complex low-power nanoscale lossless nanocommunication architecture such as nano-transmitters and nano-receivers.
Key words: Quantum-dot cellular automata (QCA)    Parity generator    Parity checker    Feynman gate    Nanocommunication    Power dissipation
收稿日期: 2015-03-15 出版日期: 2016-03-07
CLC:  TN91  
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
Jadav Chandra Das
Debashis De

引用本文:

Jadav Chandra Das, Debashis De. Quantum-dot cellular automata based reversible low power parity generator and parity checker design for nanocommunication. Front. Inform. Technol. Electron. Eng., 2016, 17(3): 224-236.

链接本文:

http://www.zjujournals.com/xueshu/fitee/CN/10.1631/FITEE.1500079        http://www.zjujournals.com/xueshu/fitee/CN/Y2016/V17/I3/224

[1] Ding Wang, Shuai Wei, Ying Wu. 多星联合定位理论性能分析[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(12): 1360-1387.
[2] Yu-Tang Zhu, Jun-yong Liu, Yong-Bo Zhao, Jun Liu, Peng-Lang Shui. 基于正定约束广义秩信号模型的低复杂度稳健自适应算法[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(11): 1245-1252.
[3] Wei Xia, Ju-lei Zhu, Wen-ying Jiang, Ling-feng Zhu. 考虑输入噪声的混合调制拉格朗日明确时延估计改进算法[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(10): 1067-1073.
[4] Hong-jiang Lei, Imran Shafique Ansari, Chao Gao, Yong-cai Guo, Gao-feng Pan, Khalid A. Qaraqe. 基于generalized-K信道的SIMO的物理层安全性能分析[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(10): 1074-1084.
[5] Jian Wu, Ting-ting Zhou, Bo Yuan, Li-qiang Wang. 一种用于位移传感器的数字莫尔方法[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(9): 946-953.
[6] Ning Du, Fa-sheng Liu. 一种新颖的多小区正交频分多址中继网络资源优化分配算法[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(8): 825-833.
[7] Xiao-ming Gou, Zhi-wen Liu, Wei Liu, You-gen Xu. 三元数域自适应滤波与跟踪算法[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(8): 834-840.
[8] En-zhong Yang, Lin-kai Zhang, Zhen Yao, Jian Yang. 软件定义网络中采用可伸缩视频组播的视频会议系统[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(7): 672-681.
[9] Meng-di Jiang, Yi Li, Wei Liu. 一般四元数函数梯度的定义、特性及在信号处理领域的应用[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(2): 83-95.
[10] Min Yuan, Bing-xin Yang, Yi-de Ma, Jiu-wen Zhang, Fu-xiang Lu, Tong-feng Zhang. 基于多尺度UDCT域字典学习及分块约束型分裂增广拉格朗日收缩算法的高度欠采样磁共振图像重构[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(12): 1069-1087.
[11] Xing-guo Zhu, Lu Yu. 视频编码中指导整数Karhunen-Loève变换设计的可逆-增益模型[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(10): 883-891.
[12] Yu-wen Qian, Meng Tian, Xue Jiang, Hua-ju Song, Feng Shu, Jun Li. 电力线通信网络中具有网络编码功能的双向中继系统的性能分析[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(10): 892-898.
[13] Michaelraj Kingston Roberts, Ramesh Jayabalan. 一种改进的用于低密度奇偶校验码的低复杂度和积译码[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(6): 511-518.
[14] Suparerk Janjarasjitt. 基于小波分析的癫痫脑电图自相似性测量[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(12): 1147-1153.
[15] Li-chun Yang, Yun-tao Qian. 基于稀疏编码的广义旁瓣抵消器语音增强算法[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(12): 1154-1163.