Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2012, Vol. 13 Issue (11): 850-858    DOI: 10.1631/jzus.C1200096
    
Uniform modeling of parameter dependent nonlinear systems
Najmeh Eghbal, Naser Pariz, Ali Karimpour
Department of Electrical Engineering, Ferdowsi University of Mashhad, P. O. Box 91775-1111, Iran
Uniform modeling of parameter dependent nonlinear systems
Najmeh Eghbal, Naser Pariz, Ali Karimpour
Department of Electrical Engineering, Ferdowsi University of Mashhad, P. O. Box 91775-1111, Iran
 全文: PDF 
摘要: This paper addresses the problem of approximating parameter dependent nonlinear systems in a unified framework. This modeling has been presented for the first time in the form of parameter dependent piecewise affine systems. In this model, the matrices and vectors defining piecewise affine systems are affine functions of parameters. Modeling of the system is done based on distinct spaces of state and parameter, and the operating regions are partitioned into the sections that we call ‘multiplied simplices’. It is proven that this method of partitioning leads to less complexity of the approximated model compared with the few existing methods for modeling of parameter dependent nonlinear systems. It is also proven that the approximation is continuous for continuous functions and can be arbitrarily close to the original one. Next, the approximation error is calculated for a special class of parameter dependent nonlinear systems. For this class of systems, by solving an optimization problem, the operating regions can be partitioned into the minimum number of hyper-rectangles such that the modeling error does not exceed a specified value. This modeling method can be the first step towards analyzing the parameter dependent nonlinear systems with a uniform method.
关键词: Parameter dependent nonlinear systemsApproximation methodParameter dependent piecewise affine systemsModeling    
Abstract: This paper addresses the problem of approximating parameter dependent nonlinear systems in a unified framework. This modeling has been presented for the first time in the form of parameter dependent piecewise affine systems. In this model, the matrices and vectors defining piecewise affine systems are affine functions of parameters. Modeling of the system is done based on distinct spaces of state and parameter, and the operating regions are partitioned into the sections that we call ‘multiplied simplices’. It is proven that this method of partitioning leads to less complexity of the approximated model compared with the few existing methods for modeling of parameter dependent nonlinear systems. It is also proven that the approximation is continuous for continuous functions and can be arbitrarily close to the original one. Next, the approximation error is calculated for a special class of parameter dependent nonlinear systems. For this class of systems, by solving an optimization problem, the operating regions can be partitioned into the minimum number of hyper-rectangles such that the modeling error does not exceed a specified value. This modeling method can be the first step towards analyzing the parameter dependent nonlinear systems with a uniform method.
Key words: Parameter dependent nonlinear systems    Approximation method    Parameter dependent piecewise affine systems    Modeling
收稿日期: 2012-04-03 出版日期: 2012-11-02
CLC:  TP273  
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
Najmeh Eghbal
Naser Pariz
Ali Karimpour

引用本文:

Najmeh Eghbal, Naser Pariz, Ali Karimpour. Uniform modeling of parameter dependent nonlinear systems. Front. Inform. Technol. Electron. Eng., 2012, 13(11): 850-858.

链接本文:

http://www.zjujournals.com/xueshu/fitee/CN/10.1631/jzus.C1200096        http://www.zjujournals.com/xueshu/fitee/CN/Y2012/V13/I11/850

[1] Jian-zhi LI , Bo AI , Rui-si HE , Qi WANG , Mi YANG , Bei ZHANG , Ke GUAN , Dan-ping HE , Zhang-dui ZHONG , Ting ZHOU , Nan LI. Indoor massive multiple-input multiple-output channel characterization and performance evaluation[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(6): 773-787.
[2] Wei ZHANG , Jia-yu ZHUANG , Xi YONG , Jian-kou LI , Wei CHEN , Zhe-min LI. Personalized topic modeling for recommending user-generated content[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(5): 708-718.
[3] Mo-fei Song, Zheng-xing Sun, Yan Zhang, Fei-qian Zhang. Synthesis of 3D models by Petri net[J]. Front. Inform. Technol. Electron. Eng., 2013, 14(7): 521-529.
[4] Ying-mei Wei, Lai Kang, Bing Yang, Ling-da Wu. Applications of structure from motion: a survey[J]. Front. Inform. Technol. Electron. Eng., 2013, 14(7): 486-494.
[5] Gabriela Magureanu, Madalin Gavrilescu, Dan Pescaru. Validation of static properties in unified modeling language models for cyber physical systems[J]. Front. Inform. Technol. Electron. Eng., 2013, 14(5): 332-346.
[6] Xiao-bo Li, Yong-lin Lei, Hans Vangheluwe, Wei-ping Wang, Qun Li. A multi-paradigm decision modeling framework for combat system effectiveness measurement based on domain-specific modeling[J]. Front. Inform. Technol. Electron. Eng., 2013, 14(5): 311-331.
[7] Li-heng Lou, Ling-ling Sun, Jun Liu, Hai-jun Gao. An efficient PSP-based model for optimized cross-coupled MOSFETs in voltage controlled oscillator[J]. Front. Inform. Technol. Electron. Eng., 2013, 14(3): 205-213.
[8] Liang Dou, Qiang Liu, Zong-yuan Yang. A metamodeling approach for pattern specification and management[J]. Front. Inform. Technol. Electron. Eng., 2013, 14(10): 743-755.
[9] Behrouz Afzal, Behzad Ebrahimi, Ali Afzali-Kusha, Massoud Pedram. An accurate analytical I-V model for sub-90-nm MOSFETs and its application to read static noise margin modeling[J]. Front. Inform. Technol. Electron. Eng., 2012, 13(1): 58-70.
[10] Jing Liao, Jin-hui Yu, Long Jia. Procedural modeling of water caustics and foamy water for cartoon animation[J]. Front. Inform. Technol. Electron. Eng., 2011, 12(7): 533-541.
[11] Yu-lei Geng, Jin Wang, Guo-dong Lu, Zheng Liu, Gang Chen. Sketch based garment modeling on an arbitrary view of a 3D virtual human model[J]. Front. Inform. Technol. Electron. Eng., 2011, 12(3): 195-203.
[12] Pejman Mowlaee, Abolghasem Sayadian, Hamid Sheikhzadeh. Split vector quantization for sinusoidal amplitude and frequency[J]. Front. Inform. Technol. Electron. Eng., 2011, 12(2): 140-154.
[13] Sheng-zheng Wang, Jie Yang, James C. Gee. Cranio-maxillofacial surgery simulation based on pre-specified target face configurations[J]. Front. Inform. Technol. Electron. Eng., 2010, 11(7): 504-513.
[14] Gloria Bueno, Oscar Déniz, Jesús Salido, Carmen Carrascosa, José M. Delgado. Three-dimensional organ modeling based on deformable surfaces applied to radio-oncology[J]. Front. Inform. Technol. Electron. Eng., 2010, 11(6): 407-417.
[15] Yan Deng, Xiang-ning He, Jing Zhao, Yan Xiong, Yan-qun Shen, Jian Jiang. Application of artificial neural network for switching loss modeling in power IGBTs[J]. Front. Inform. Technol. Electron. Eng., 2010, 11(6): 435-443.