Communication Mechanism of Intelligent Multi-platform Content Production: Organizational Embedding and Institutional Adaptation of Generative AI
Chen Changfeng1,2, Wu Peiying1
1.School of Journalism and Communication, Tsinghua University, Beijing 100084, China 2.School of Journalism and Communication, Jinan University, Guangzhou 510632, China
Abstract:In the context of systemic transformation of mainstream media and the deep integration of generative artificial intelligence (AI) technology in the journalism industry, China’s mainstream media face the dual challenge of transforming both technological tools and organizational systems. However, existing research still falls short in theorizing the concept of “system”, dynamically analyzing transformations, and responding to institutional changes in the new technological ecosystem. Therefore, this study focuses on a core issue: how can mainstream media construct an “intelligent news dynamic collaboration system” based on the coordination of humans, technology, and institutions? What are the structural forms, operational mechanisms, and evolutionary logic of this system?Based on in-depth interviews with 47 mainstream media professionals and grounded theory coding analysis, this study identifies multiple structural tensions arising from the application of intelligent technologies in the journalism industry. First, there is a structural misalignment between institutions and practice: generative AI has gradually evolved from individual exploration to institutionalized application, but there are differences in cognition and application across various levels and generations of professionals. Second, AI is increasingly integrated as a key node in the news production process, while also redefining professional boundaries: AI has transformed from an external tool to a key node in news production, breaking the human-centered content creation logic. This shift pushes media from being news providers to becoming intelligent network organizers, but journalists do not allow AI to take on the core tasks of writing, reinforcing the professional value and boundaries of human journalists. Third, there is the gray zone in practice due to the absence of regulations: although AI has become a regular part of the news writing process, there is a lack of clear institutional norms regarding issues such as authorship and copyright. As a result, some journalists conceal their use of AI, and editors intensify the scrutiny of content. Fourth, there is the emergence of technical intermediaries and the lack of institutional safeguards: the role of technical staff has shifted from backend support to frontline governance, but there is still a lack of clear institutional support at the organizational level. Fifth, there is the cross-organizational interaction under the platform logic: the computational power and data flow of platforms have affected the work rhythm and resource allocation within news organizations, with the technical systems gradually eroding the autonomy of content production.These structural tensions highlight the core issue of the intelligent transformation in journalism the absence of a stable, collaborative, and dynamically adjustable intelligent news collaboration system. The ideal system should organically combine technological infrastructure, platform mechanisms, value guidance, and institutional feedback. It should exhibit dynamic network characteristics that promote flexible cooperation among diverse nodes; achieve a balance between platform and organizational systems, facilitating mutual negotiation of resources, rhythm, and logic; strengthen the authenticity and professionalism of the news system; and ensure clear role division and real-time institutional feedback regulation.Theoretically, this paper reveals the embedding logic and structural impact of generative AI in Chinese news organizations, proposing the “intelligent news dynamic collaboration system” model. It innovatively transitions from static individual experiences to dynamic scenarios, and from functionalism to a systems theory perspective. Practically, this paper provides empirical evidences for the integration of generative AI in news organizations, emphasizing the need for professional oversight, value judgment, and ethical review in the intelligent age. It also points out that human-machine collaboration mechanisms, job responsibility configurations, and platform-dependent governance urgently require institutional regulation.
1 胡正荣:《我国主流媒体系统性变革破题的几个关键点》,《新闻与写作》2025年第4期,第1页。 2 周怡靓、曾培伦:《规避“索洛悖论”:中国新闻业的人工智能赋能路径——基于通用目的技术的分析》,《南京社会科学》2025年第1期,第114-125页。 3 D?rr K. N., “Mapping the field of algorithmic journalism,” Digital Journalism, Vol. 4, No. 6 (2016), pp. 700-722. 4 Miroshnichenko A., “AI to bypass creativity. Will robots replace journalists? (The answer is “yes”),” 2018-07-23, https://mdpi-res.com/d_attachment/information/information-09-00183/article_deploy/information-09-00183.pdf?version=1532416815. 5 Tejedor S. & Vila P., “Exo journalism: a conceptual approach to a hybrid formula between journalism and artificial intelligence,” Journalism and Media, Vol. 2, No. 4 (2017), pp. 830-840. 6 Cools H. & Diakopoulos N., “Uses of generative AI in the newsroom: mapping journalists’ perceptions of perils and possibilities,” 2024-08-26, https://www.tandfonline.com/doi/epdf/10.1080/17512786.2024.2394558?needAccess=true, 2025-09-26. 7 Shi Y. & Sun L., “How generative AI is transforming journalism: development, application and ethics,” Journalism and Media, Vol. 5, No. 2 (2024), pp. 582-594. 8 Lewis S. C., Guzman A. L. & Schmidt T. R., “Automation, journalism, and human-machine communication: rethinking roles and relationships of humans and machines in news,” Digital Journalism, Vol. 7, No. 4 (2019), pp. 409-427. 9 Schapals A. K. & Porlezza C., “Assistance or resistance? evaluating the intersection of automated journalism and journalistic role conceptions,” Media and Communication, Vol. 8, No. 3 (2020), pp. 16-26. 10 Cools H., Gorp B. V. & Opgenhaffen M., “When algorithms recommend what’s new(s): new dynamics of decision-making and autonomy in newsgathering,” Media and Communication, Vol. 9, No. 4 (2021), pp. 198-207. 11 Noain-Sánchez A., “Addressing the impact of artificial intelligence on journalism: the perception of experts, journalists and academics,” Communication Society, Vol. 35, No. 3 (2022), pp. 105-121. 12 Th?sler-Kordonouri S. & Barling K., “Automated journalism in UK local newsrooms: attitudes, integration, impact,” Journalism Practice, Vol. 19, No. 1 (2025), pp. 58-75. 13 吴璟薇、杨鹏成、丁宇涵:《技术的追问:对智能新闻生产中人与技术关系的考察》,《新闻与写作》2022年第10期,第29-42页。 14 严三九、陶冠男:《长三角新闻工作者ChatGPT使用意愿的影响因素——基于创新扩散理论》,《现代传播(中国传媒大学学报)》2024年第3期,第13-22页。 15 蔡梦虹、陈衍宁:《技术未来价值投射偏差?——新闻记者人工智能工具使用意愿影响机制研究》,《新闻记者》2024年第12期,第87-101页。 16 徐敬宏、任洁、渠润泽等:《生成式人工智能如何影响新闻职业边界——基于对30位中国新闻工作者的深度访谈》,《新闻与写作》2025年第3期,第99-109页。 17 Simon F., “Artificial intelligence in the news: how AI retools, rationalizes, and reshapes journalism and the public arena,” 2024-02-06, https://www.cjr.org/tow_center_reports/artificial-intelligence-in-the-news.php, 2025-09-26. 18 Rinehart A. & Kung E., “Artificial intelligence in local news: a survey of US newsrooms’ AI readiness,” 2022-03-29, https://www.ap.org/media-center/press-releases/2022/ap-releases-new-report-on-ai-in-local-news/, 2025-09-26. 19 Munoriyarwa A., “Unravelling socio-technological barriers to AI integration: a qualitative study of Southern African newsrooms,” Emerging Media, Vol. 2, No. 3 (2024), pp. 474-498. 20 Lopez M. G., Porlezza C. & Cooper G. et al., “A question of design: strategies for embedding AI-driven tools into journalistic work routines,” Digital Journalism, Vol. 11, No. 3 (2023), pp. 484-503. 21 Ali W. & Hassoun M., “Artificial intelligence and automated journalism: contemporary challenges and new opportunities,” International Journal of Media, Journalism And Mass Communications, Vol. 5, No. 1 (2019), pp. 40-49. 22 Komatsu T., Lopez M. G. & Makri S. et al., “AI should embody our values: investigating journalistic values to inform AI technology design,” https://doi.org/10.1145/3419249.3420105, 2025-09-26. 23 Jones B., Jones R. & Luger E., “AI ‘everywhere and nowhere’: addressing the AI intelligibility problem in public service journalism,” Digital Journalism, Vol. 10, No. 10 (2022), pp. 1731-1755. 24 Cools H. & Koliska M., “News automation and algorithmic transparency in the newsroom: the case of the Washington Post,” Journalism Studies, Vol. 25, No. 6 (2024), pp. 662-680. 25 Misri A., Blanchett N. & Lindgren A., “There’s a rule book in my head: journalism ethics meet AI in the newsroom,” Digital Journalism, https://doi.org/10.1080/21670811.2025.2495693, 2025-09-26. 26 王奕文、季为民:《技术自主性视角下的人工智能与新闻伦理》,《全球传媒学刊》2025年第1期,第129-144页。 27 陈昌凤、张梦:《由数据决定?AIGC的价值观和伦理问题》,《新闻与写作》2023年第4期,第15-23页。 28 黄阳坤、师文、陈昌凤:《智能算法如何重构新闻价值?——基于智能推荐平台算法审计的研究》,《新闻大学》2024年第6期,第18-33,118-119页。 29 胡正荣、闫佳琦:《生成式人工智能的价值对齐比较研究——基于2012—2023年十大国际新闻生成评论的实验》,《新闻大学》2024年第3期,第1-17,117页。 30 陈昌凤、袁雨晴:《弥合对齐鸿沟:数智新闻业中人机关系的多维重塑》,《中国编辑》2025年第6期,第21-30页。 31 耿晓梦、喻国明:《中国式现代化视域下主流媒体系统性变革的行动逻辑》,《新闻与写作》2025年第4期,第37-44页。 32 郭全中、李黎:《主流媒体系统性变革的实践模式、问题清单与优化对策》,《新闻记者》2025年第4期,第10-17,34页。 33 李彪、陈智睿:《全媒体时代主流媒体系统性变革:内在逻辑、理论支点与实践进路》,《编辑之友》2025年第1期,第11-18页。 34 朱鸿军、王涛:《系统论视角下主流媒体系统的构成与变革路径》,《新闻与写作》2025年第3期,第50-60页。 35 蔡雯、汪惠怡:《中国主流新闻媒体走向系统性变革的道路及挑战》,《编辑之友》2025年第1期,第5-10页。 36 涂凌波、杨靖毅:《主流媒体系统性变革如何“破局”:基于新闻生产力与生产关系的分析》,《新闻与写作》2025年第4期,第5-14页。 37 陆小华:《推进主流媒体系统性变革的三个战略性抉择》,《新闻记者》2025年第4期,第3-9页。 38 郭全中、佟雨欣、黄昊漪:《构建主流媒体系统性变革的“系统性”实施框架》,《新闻与写作》2025年第4期,第54-62页。 39 郭海威、胡正荣:《主流媒体系统性变革的基本要求、战略目标与实践路径》,《中国出版》2025年第2期,第3-10页。 40 刘双、刘燕南:《正能量·高质量·大流量:主流媒体评价体系的三维重构与创新升级》,《电视研究》2025年第1期,第23-27页。 41 张志安、冉桢:《技术、平台与数据:基于业界感知的主流媒体系统性变革路径》,《新闻与写作》2025年第4期,第26-36页。 42 李鹏、张发扬:《智能化革命与双循环一体:系统性变革视野下的主流媒体发展路径探索》,《新闻界》2024年第12期,第90-96页。 43 吕铠、李康跃:《大模型视域下新型主流媒体的系统性变革及其路径》,《当代传播》2025年第2期,第48-53页。 44 曾祥敏、刘思琦:《机制、平台与用户:主流媒体系统性变革的三大着力点——基于全国各层级主流媒体融合发展的5年考察研究》,《新闻与写作》2025年第4期,第15-25页。 45 廖慧、黄楚新、王奕涵:《以体制机制创新推进主流媒体系统性变革:内在逻辑与关键切入》,《新闻与写作》2025年第4期,第45-53页。 46 李彪、陈智睿:《组织架构重构:数智生态赋能主流媒体系统性变革的关键维度》,《中国编辑》2025年第1期,第72-79页。 47 费小冬:《扎根理论研究方法论:要素、研究程序和评判标准》,《公共行政评论》 2008年第3期,第23-43,197页。 48 朱威、王辰瑶:《传统新闻编辑室如何面对“算法”?——对N市三家报社算法新闻实践的实地研究》,《新闻记者》2023年第8期,第30-39,72页。 49 余跃洪:《成名无望:平台热点运营者的工作常规与身份想象——基于S互联网公司的田野研究》,《国际新闻界》2024年第10期,第49-70页。 50 Nechushtai E., “Could digital platforms capture the media through infrastructure?” Journalism, Vol. 19, No. 8 (2018), pp. 1043-1058. 51 杨雅、滕文强、喻国明:《“熟知还是真知”?生成式AI对媒体融合变革的影响——基于复杂系统的视角》,《南京社会科学》2024年第11期,第94-104页。 52 Reese S. D., “The institution of journalism: conceptualizing the press in a hybrid media system,” Digital Journalism, Vol. 10, No. 2 (2022), pp. 253-266.