en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
PHILOSC G. On a Kamenev’s integral criterion for oscillation of linear differential equations of second order[J]. Annals Polonais Mathematics,1983, 21:175-194.
参考文献 2
PHILOSC G.Oscillation theorems for linear differential equations of second order[J]. Archiv Der Mathematik,1989, 53(5):482-492.doi:10.1007/bf01324723
参考文献 3
SUNY G, MENGF W. Note on the paper of Dzurina and Stavroulakis[J]. Applied Mathematics and Computation, 2006, 174(2):1634-1641.doi:10.1016/j.amc.2005.07.008
参考文献 4
BACULÍKOVÁB,LIT X, DŽURINAJ.Oscillation theorems for second-order superlinear neutral differential equations [J]. Mathematica Slovaca, 2013, 63(1):123-134.doi:10.2478/s12175-012-0087-9
参考文献 5
LIUH D, FANW M, LIUP C.Oscillation and asymptotic analysis on a new generalized Emden-Fowler equation[J]. Applied Mathematics and Computation, 2012, 219(5):2739-2748.
参考文献 6
AGARWALR P, BOHNERM, LIT X, et al.Oscillation of second-order Emden-Fowler neutral delay differential equations[J]. Annali di Matematica Pura ed Applicata, 2014,193(6):1861–1875.doi:10.1007/s10231-013-0361-7
参考文献 7
WUY Z,YUY H, ZHANGJ M, et al.Oscillation criteria for second order Emden-Fowler functional differential equations of neutral type[J]. Journal of Inequalities and Applications, 2016, 2016(1):328-338.doi:10.1186/s13660-016-1268-9
参考文献 8
黄记洲,符策红.广义Emden-Fowler方程的振动性[J]. 应用数学学报,2015,38(6):1126-1135.
HUANGJ Z, FUC H. Oscillation criteria of generalized Emden-Fowler equations[J]. Acta Mathematicae Applicatae Sinica, 2015, 38(6):1126-1135.
参考文献 9
杨甲山, 覃桂茳.一类二阶微分方程新的Kamenev型振动准则[J]. 浙江大学学报(理学版),2017, 44(3):274-280.
YANGJ S, QING J. Kamenev-type oscillation criteria for certain second-order differential equations[J]. Journal of Zhejiang University(Science Edition), 2017, 44(3):274-280.
参考文献 10
BACULÍKOVÁB, DŽURINAJ.Oscillation of third-order neutral differential equations[J]. Mathematical and Computer Modelling, 2010, 52(1):215-226.doi:10.1016/j.mcm.2010.02.011
参考文献 11
THANDAPANIE, LIT X.On the oscillation of third-order quasi-linear neutral functional differential equations[J]. Archivum Mathematicum, 2011, 47 (3) :181-199.
参考文献 12
LIT X, ZHANGC H.Properties of third-order half-linear dynamic equations with an unbounded neutral coefficient[J]. Advances in Difference Equations, 2013 , 2013(1):1-8.doi:10.1186/1687-1847-2013-333
参考文献 13
JIANGY, LIT X.Asymptotic behavior of a third-order nonlinear neutral delay differential equation[J]. Journal of Inequalities and Applications, 2014, 2014(1):512.doi:10.1186/1029-242x-2014-512
参考文献 14
YANGL L, XUZ T. Oscillation of certain third-order quasilinear neutral differential equation[J]. Mathematica Slovaca, 2014, 64(1):85-100.doi:10.2478/s12175-013-0189-z
参考文献 15
JIANGY, JIANGC M, LIT X. Oscillatory behavior of third-order nonlinear neutral delay differential equations[J]. Advances in Difference Equations, 2016 , 2016(1):171.doi:10.1186/s13662-016-0902-7
参考文献 16
YANGX J. Oscillation criterion for a class of quasilinear differential equations[J]. Applied Mathematics and Computation, 2004, 153(1):225-229.doi:10.1016/s0096-3003(03)00626-x
目录 contents

    摘要

    研究一类三阶非线性分布时滞动力方程的振动性,通过构造广义Riccati变换得到一类新的广义Riccati不等式,利用积分平均技巧等方法,建立了保证该方程一切解均振动或收敛于0的若干新的振动结果,推广和改进了近期文献的相关结论,并给出了若干例子。

    Abstract

    In the paper, oscillatory behaviors for a class of the third order nonlinear dynamic equations with distributed delays are studied. Using methods such as generalized Riccati transformation and Integral averaging technique, some new sufficient criteria are established that any solution of the equations will be either oscillatory or convergent to zero . The results extend the respective studies in recent literature, and give a number of examples to prove the efficiency.

  • 0 引言

    微分方程的振动理论是微分方程定性理论一个比较成熟的分支,在机械振动、生物制药、控制工程、力学等领域具有广泛的应用。

    考虑一类三阶广义Emden-Fowler型分布时滞方程

    r(t)(x(t)+abp(t,ξ)xα(τ(t,ξ))dξ)β-1×
    (x(t)+abp(t,ξ)xα(τ(t,ξ))dξ)'+
    cdq(t,ξ)x(δ(t,ξ))γ-1x(δ(t,ξ))dξ=0,tt
    (1)

    的振动性。方便起见,记Z(t)=x(t)+abp(t,ξ)xα(τ(t,ξ))dξ,并假设下列条件成立:

    H10<α1β>0,γ>0,且α,β,γ为2个正奇数之商;

    H2r(t)0r'(t)0t0r-1β(s)ds=+q(t,ξ)C((t0+)×[c,d],R+)

    H3p(t,μ)C([t0,+)×[a,b],R)

    0p(t)abp(t,μ)dμP<1,
    limt+p(t)=0;

    H4τ(t,μ)C([t0,+)[a,b],R)

    τ(t,μ)μ0,τ(t,μ)t,
    limt+minμ[a,b]τ(t,μ)=+;

    H5δ(t,ξ)C([t0,+)×[c,d],R),

    δ(t,ξ)ξ0,δ(t,ξ)t,
    limt+minξ[c,d]]δ(t,ξ)=+

    定义1若动力方程(1)的一个非平凡解有任意大的零点,则称其为振动解,否则为非振动解。若动力方程(1)的所有解均振动,则称该方程是振动的,否则为非振动的。

    近年来,Emden-Fowler型微分方程广泛应用于物理学和工程领域,其振动理论广受关注,成果颇1,2,3,4,5,6,7,8,9,10,11,12,13,14,15。PHILOS 1,2 建立了经典Emden-Fowler方程

    x(t)+q(t)x(t)γ-1x(t)=0

    的若干振动准则;SUN3和BACULIKOVA4给出了方程

    [r(t)|x'(t)|β-1x'(t)]'+q(t)|x(δ(t))|β-1x(δ(t))=0

    的振动结果;文献[5,6,7,8,9]研究了方程

    [r(t)|Z'(t)|β-1Z'(t)]'+q(t)|x(δ(t))|γ-1x(δ(t))=0

    的振动性质;文献[10,11,12,13,14,15]给出了三阶Emden-Fowler时滞动力方程

    [r(t)|Z(t)|β-1Z(t)]'+q(t)|x(δ(t))|β-1x(δ(t))=0

    的若干振动性质。

    本文利用广义Riccati变换和不等式技巧,给出方程(1)在0<α1,β>0,γ>0下的若干新的振动定理,所得结果不仅将文献[1,2,3,4,5,6,7,8,9]的研究对象拓展到了三阶情形,而且将文献[10,11,12,13,14,15]中的振动性质由α=1,β=γ>0推广到0<α1,β>0,γ>0,最后给出了若干例子来验证结论的有效性。

  • 1 相关引理

    引理1设x(t)是方程(1)的最终正解,则Z(t)有以下2种可能:

    (Ⅰ)Z(t)>0Z'(t)>0,Z(t)>0

    (Ⅱ)Z(t)>0,Z'(t)<0,Z(t)>0

    证明设x(t)是动力方程(1)的最终正解,由Z(t)的定义可得Z(t)x(t)>0

    [r(t)|Z(t)|β-1Z(t)]'=[r(t)(Z(t))β]'=-cdq(t,ξ)xγ(δ(t,ξ))dξ0,

    r(t)|Z(t)|β-1Z(t)单调递减且最终定号,因此有Z(t)>0或者Z(t)<0两种情形。

    假定Z(t)<0,由条件(H1)知,-r(t)x(-Z(t))β<0,故存在一个充分大的正数t1K1>0,使得

    -r(t)-Z(t)β<-K1<0

    整理得

    -Z(t)K1r(t)1β

    上式两边从t1t积分,可得

    Z'(t)Z'(t1)-t1tK1r(s)1βds

    t+,由条件(H2)知,Z'(t)-,所以存在t2>t1及正数K2>0,使得

    Z'(t)-K2t>t2>t1

    两边从t2t积分得

    Z(t)Z(t2)-K2(t-t2)

    t+,则Z(t)-,这与Z(t)>0矛盾,于是Z(t)>0成立,所求得证。

    引理2设X,Y为非负实数,则当0<λ1时,Xλ+Yλ21-λ(X+Y)λ

    证明由函数f(x)=xλ(0<λ1)的凹凸性便可证得,此略。

    引理39(Bernoulli不等式) 对任意实数x>-1,当0r1时,(1+x)r1+rx; 当r0r1时,(1+x)r1+rx

    引理416 设存在2个非负函数A>0,B>0θ>0,则

    Bu-Auθ+1θθθ(θ+1)θ+1Bθ+1Aθ

    引理5设x(t)是动力方程(1)的最终正解,Z(t)满足引理1条件(Ⅰ),则

    [r(t)(Z(t))β]'+Q1(t)Zγ(δ(t,c))0,
    (2)

    其中,

    Q1(t)=1-α21-α+(21-α-1)kPγcdq(t,ξ)dξ

    证明由Z(t)的定义、条件(Ⅰ)、(H3)、(H4)及引理2、引理3可得

    x(t)Z(t)-(1+Zα(t))P+PZ(t)-21-α(1+Z(t))αP+PZ(t)-21-α(1+αZ(t))P+P=(1-α21-αP)Z(t)-(21-α-1)P

    由条件(Ⅰ)知,Z(t)>0,Z'(t)>0,所以Z(δ(t,c))Z(δ(t1,c)),tt1。记Z(δ(t1,c))=k>0,则Z(δ(t,c))k,tt1。于是

    cdq(t,ξ)xγ(δ(t,ξ))dξcdq(t,ξ)[(1-α21-αP)Z(δ(t,c))-(21-α-1)P]γdξZγ(δ(t,c))1-α21-α+(21-α-1)kPγ×cdq(t,ξ)dξ

    Q1(t)=1-α21-α+(21-α-1)kPγcdq(t,ξ)dξ

    则由方程(1)可得式(2)成立。

    引理63Z(t)>0,Z'(t)>0,Z(t)>0,Z(t)0,tT0,则存在η(0,1)Tη>to,使得

    Z(t)Z'(t)ηttTη

    引理7设x(t)是方程(1)的最终正解,且Z(t)满足(Ⅰ),若存在函数ρ(t)C1([t0,),R+)ρ'(t)ρ(t)0,做广义Riccati变换

    ω˜(t)=ρ(t)r(t)(Z(t))β(Z'(δ(t,c)))γ>0

    则可得一类广义Riccati不等式

    w¯'(t)-ρ(t)Q1(t)(ηδ(t,c))γ+Q2(t)ω˜(t)-λδ'(t,c)m(ρ(t)r(t))1λω˜λ+1λ(t),t>T
    (3)

    其中,

    Q1(t)=1-α21-α+(21-α-1)kPγcdq(t,ξ)dξQ2(t)=ρ'(t)ρ(t)T=max{T1,T2}λ=min{β,γ}m=m1,γ>β>0,m2,βγ>0

    证明由ω˜(t)的定义及引理5、引理6可得

    ω˜'(t)-ρ(t)Q1(t)(ηδ(t,c))γ+Q2(t)ω˜(t)-γρ(t)r(t)(Z(t))βZ(δ(t,c))δ'(t,c)Z'γ+1(δ(t,c))

    (ⅰ) 当γ>β>0时,

    -γρ(t)r(t)(Z(t))βZ(δ(t,c))δ'(t,c)Z'γ+1(δ(t,c))=-(ρ(t)r(t))1+1β(Z(t))β+1(Z'(δ(t,c)))γ+γβ×γZ(δ(t,c))δ'(t,c)(ρ(t)r(t))1βZ(t)(Z'(δ(t,c)))1-γβ,

    由方程(1)知,[r(t)Z(t)β]'=r'(t)Z(t)β+βr(t)(Z(t))β-1Z(t)0,因为β>0,r(t)0,r'(t)0,Z(t)>0,故当t充分大时,Z(t)0,从而

    Z(δ(t,c))Z(t)1

    又因为当γ>β>0时,(Z'(δ(t,c)))γβ-1单调递增,故存在充分大的T1>t2,使

    (Z'(δ(t,c)))γβ-1(Z'(δ(T1,c)))γβ-1,t>T1

    m1=min{1,(Z'(δ(T1,c)))γβ-1},则

    (Z'(δ(t,c)))γβ-1(Z'(δ(T1,c)))γβ-1m1,t>T1,

    从而

    -γρ(t)r(t)(Z'(t))βZ'(δ(t,c))δ'(t,c)Zγ+1(δ(t,c))-βδ'(t,c)m1(ρ(t)r(t))1βw¯β+1β(t),

    故可得当γ>β>0时,广义Riccati不等式

    w'(t)-ρ(t)Q1(t)(ηδ(t,c))γ+Q2(t)w¯(t)-βδ'(t,c)m1(ρ(t)r(t))1βw¯β+1β(t)

    (ⅱ) 当βγ>0时,

    -γρ(t)r(t)(Z(t))βZ(δ(t,c))δ'(t,c)Z'γ+1(δ(t,c))=-(ρ(t)r(t))1+1γ(Z(t))β+βγ(Z'(δ(t,c)))γ+1×γZ(δ(t,c))δ'(t,c)(ρ(t)r(t))1γZ(t)βγ,

    同样,由Z(t)0知,Z(t)单调递减,故存在充分大的T2>t2,使得

    Z(δ(t,c))Z(t)1
    Z(t)(Z(t))βγ=(Z(t))1-βγ(Z(T2))1-βγt>T2

    m2=min{1,(Z(T2))1-βγ},则

    Z(δ(t,c))Z(t)βγ=Z(δ(t,c))Z(t)×Z(t)Z(t)βγm2

    -γρ(t)r(t)(Z(t))βZ'(δ(t,c))δ'(t,c)Zγ+1(δ(t,c))-γδ'(t,c)m2(ρ(t)r(t))1γω˜γ+1γ(t)

    于是得到βγ>0时的广义Riccati不等式

    w'(t)-ρ(t)Q1(t)(ηδ(t,c))γ+Q2(t)w¯(t)-γδ'(t,c)m2(ρ(t)r(t))1γw¯γ+1γ(t)

    现记T=max{T1,T2}λ=min{β,γ}m=m1,γ>β>0m2,βγ>0。综合上述(i)和(ii)可得,当β>0,γ>0时广义Riccati不等式(3)成立。

    引理8设x(t)是方程(1)的最终正解,Z(t)满足引理1条件(Ⅱ),若

    T+v+1r(u)u+cdq(s,ξ)dξds1βdudv=+,
    (4)

    limt+x(t)=0

    证明x(t)是方程(1)的最终正解,Z(t)满足引理1条件(Ⅱ)。因为Z(t)>0Z'(t)<0,则由单调有界定理可知limt+Z(t)存在,记limt+Z(t)=l,则l0

    假设l>0,由于limt+Z(t)=l,limt+p(t)=0,则对任意小正数0<ε<minl,12αl1-α,可得l<Z(t)<l+ε0p(t)<ε,从而

    x(t)Z(t)-abp(t,μ)Zα(τ(t,μ))dμZ(t)-abp(t,μ)Zα(τ(t,μ))dμl-(l+ε)αεl-(2l)αε=N(l+ε)>NZ(t),

    其中,N=l-(2l)αεl+ε>0,于是

    [r(t)(Z(t))β]'=-cdq(t,ξ)xγ(δ(t,ξ))dξ-cdq(t,ξ)(NZ(δ(t,ξ)))γdξ
    -(Nl)γ)cdq(t,ξ)dξ

    两边关于st+积分得

    Z(t)K(Nl)γ1r(t)t+cdq(s,ξ)dξds1β

    两边关于ut0+积分,关于vT+积分得

    Z(T)(Nl)γT+v+1r(u)u+cdq(s,ξ)dξds1βdudv,

    这与式(4)矛盾,因此limt+x(t)=limt+Z(t)=0

  • 2 主要结果

    定理1假设条件(H1)~(H5)及式(4)成立。若

    limsupt+Ttρ(s)Q1(s)(ηδ(s,c))γ-Q2(s)λ+1λ+1ρ(s)r(s)mλ(δ'(s,c))λds=+,
    (5)

    则方程(1)的任意解振动或收敛于0。

    证明假设x(t)为方程(1)的任意非振动解,不失一般性,可设x(t)是动力方程(1)的最终正解。当Z(t)满足引理1情形(Ⅰ)时,由引理7可得式(3)成立,再由引理4得

    ω˜'(t)-ρ(t)Q1(t)(ηδ(t,c))γ+Q2(t)λ+1λ+1ρ(t)r(t)(mδ'(t,c))λ

    两边从Tt积分得

    ω˜(t)ω˜(T)-Ttρ(s)Q1(s)(ηδ(t,c))γ-Q2(s)λ+1λ+1ρ(s)r(s)(mδ'(s,c))λds

    t+,由式(5)可得ω˜(t)-,这与ω˜(t)>0矛盾,从而x(t)为方程(1)的振动解。

    Z(t)满足引理1情形(Ⅱ)时,由式(4)和引理8知,limt+x(t)=0,所求得证。

    假设ρ(t)=δ(t,c),定理1则为推论1。

    推论1假定条件(H1)~(H5)及式(4)成立。若

    limsuptTtδ(s,c)Q1(s)-Q2(s)λ+1λ+1δ(s,c)r(s)mλ(δ'(s,c))λds=+,

    则方程(1)的任意解振动或收敛于0。

    下文将利用Philos型积分平均条件,给出方程(1)的若干新的振动结果。为此令

    D0={(t,s):t>st0}
    D={(t,s):tst0}

    若满足:

    (i)H(t,t)=0,tt0,且H(t,s)>0(t,s)D

    (ii) H(t,s)sD0上是连续且非正的;

    (iii) 存在ρ(t)C1([t,0),R+)h(t,s)C(D0,R),使得

    H(t,s)s+Q2(s)H(t,s)=-h(t,s)Hλλ+1(t,s)

    称函数H(t,s)C1(D,R)属于F类,记作H(t,s)F。(6)

    定理2假定(H1)~(H5)及式(4)成立。若

    limsupt+1H(t,T)TtH(t,s)ρ(s)Q1(s)(ηδ(s,c))γ-h(t,s)λ+1λ+1ρ(s)r(s)mλ(δ'(s,c))λds=+,
    (7)

    则方程(1)的任意解振动或收敛于0。

    证明假设x(t)为方程(1)的任意非振动解,不失一般性,令x(t)为动力方程(1)的最终正解。当Z(t)满足引理1情形(Ⅰ)时,由引理7知,式(3)成立,两边同乘以H(t,s),且两边从Tt(t>T)积分得

    TtH(t,s)ρ(s)Q1(s)(ηδ(s,c))γdsTtH(t,s)-ω˜'(s)+Q2(s)ω˜(s)-λδ'(s,c)m(ρ(s)r(s))1λω˜λ+1λ(s)dsH(t,T)ω˜(T)+Tth(t,s)ω˜(s)Hλλ+1(t,s)-H(t,s)λδ'(s,c)m(ρ(t)r(t))1λω˜λ+1λ(s)dsH(t,T)ω˜(T)+Tth(t,s)λ+1λ+1ρ(s)r(s)mλ(δ'(s,c))λds
    (8)

    整理得

    w¯(T)1H(t,T)TtH(t,s)ρ(s)Q1(s)×(ηδ(s,c))γ-h(t,s)λ+1λ+1ρ(s)r(s)mλ(δ'(s,c))λds
    (9)

    与式(7)矛盾,从而x(t)为动力方程(1)的振动解。

    Z(t)满足引理1情形(Ⅱ)时,由于式(4)成立,由引理8知,limt+x(t)=0,所求得证。

    H(t,s)=(t-s)n,则定理2可简化为Kamenev型振动结果:

    推论2假定(H1)~(H5)及式(4)成立。若

    limsupt+1tnTt(t-s)nρ(s)Q1(s)(ηδ(s,c))β-h(t,s)λ+1λ+1ρ(s)r(s)mλ(δ'(s,c))λds=+,
    (10)

    则方程(1)的任意解振动或收敛于0。

    定理3假设(H1)~(H5)及式(4)成立。若

    (C1)0<infsTliminft+H(t,s)H(t,T)+,
    (C2)limsupt+1H(t,T)Ttρ(s)r(s)h(t,s)λ+1(λmδ'(s,c))λds<+,
    (C3)limsupt+1H(t,T)TtH(t,s)ρ(s)Q1(s)×(ηδ(s,c))γ-h(t,s)λ+1λ+1×ρ(s)r(s)mλ(δ'(s,c))λdsA(T)
    (C4)limsupt+Ttλmδ'(s,c)(ρ(s(r(s))1λA+λ+1λ(s)ds=+

    其中,A+(s)=max{A(s),0},则方程(1)的任意解振动或收敛于0。

    证明设x(t)为方程(1)的任意非振动解,不失一般性,可设x(t)是动力方程(1)的最终正解。当Z(t)满足引理1情形(Ⅰ)时,由定理2的证明可得式(9)成立,再由(C3)

    ω˜(T)A(T)
    (11)

    利用式(8)及(C3)可得

    liminft+1H(t,T)TtH(t,s)λδ'(s,c)m(ρ(s)r(s))1λw¯λ+1λ(s)ds-1H(t,T)Tth(t,s)w¯(s)Hλλ+1(t,s)dsw¯(T)-limsupt+1H(t,T)TtH(t,s)ρ(s)Q1(s)×(ηδ(s,c))γdsw¯(T)-A(T)<+
    (12)

    F(t)=1H(t,T)TtH(t,s)λδ'(s,c)m(ρ(s)r(s))1λw¯λ+1λ(s)ds,
    G(t)=1H(t,T)Tth(t,s)ω˜(s)Hλλ+1(t,s)ds,

    则由式(12)可得

    liminft+[F(t)-G(t)]<+
    (13)

    由于只有

    Ttλδ'(s,c)m(ρ(s)r(s))1λω˜λ+1λ(s)ds<+
    Ttλδ'(s,c)m(ρ(s)r(s))1λω˜λ+1λ(s)ds=+

    2种情形,下面分别假设以上2种情形成立。利用反证法均可得到矛盾的结论,从而得原假设不成立。

    情形1假设

    Ttλδ'(s,c)m(ρ(s)r(s))1λw¯λ+1λ(s)ds<+
    (14)

    则由式(11)得

    Ttλmδ'(s,c)(ρ(s)r(s))1λA+λ+1λ(s)dsTtλmδ'(s,c)(ρ(s(r(s))1λw¯λ+1λ(s)ds<+,

    这与(C4)矛盾,所以式(14)不成立。

    情形2假设

    Ttλδ'(s,c)m(ρ(s)r(s))1λω˜λ+1λ(s)ds=+
    (15)

    η是一个充分小的正数,利用条件(C1)

    0<η<infsTliminftH(t,s)H(t,T)<+,
    (16)

    由式(15)可得,对任意大的正数μ>0,有

    Ttλδ'(s,c)m(ρ(s)r(s))1λω˜λ+1λ(s)dsμη,t>T
    (17)

    利用(C1)及方程(16)、(17),取T'>T,由分部积分法可得

    F(t)=1H(t,T)TtH(t,s)ω˜λ+1λ(s)λmδ'(s,c)(ρ(s)r(s))1λds=1H(t,T)Tt-H(t,s)sTsω˜λ+1λ(u)×λmδ'(u,c)(ρ(u)r(u))1λduds1H(t,T)T't-H(t,s)s×T'sω˜λ+1λ(u)λmδ'(u,c)(ρ(u)r(u))1λduds1H(t,T)T't-H(t,s)sμηdsH(t,T')H(t,T)μημ
    (18)

    由于μ为任意大的正数,由式(13)、(17)可得

    limt+F(t)=+,limt+G(t)=+
    (19)

    考虑数列{tn}n=1,tn+,由式(13)、(19),存在M>0,使得n充分大时

    F(tn)-G(tn)MG(tn)-F(tn)-M

    两边同时除以F(tn),当n充分大时

    F(tn)>43MG(tn)F(tn)-1-MF(tn)>-34

    G(tn)F(tn)>14,G(tn)F(tn)λ>14λ,
    G(tn)λ+1F(tn)λ>G(tn)4λ+
    (20)

    又因为

    G(tn)=1H(tn,T)Ttnh(tn,s)ω˜(s)Hλλ+1(tn,s)ds=1H(tn,T)Ttnh(tn,s)λδ'(s,c)m(ρ(s)r(s))1λλλ+1×λδ'(s,c)m(ρ(s)r(s)1λλλ+1w¯(s)Hλλ+1(tn,s)ds

    两边同乘以G(tn)1λ

    G(tn)λ+1λ=1H(tn,T)λ+1λTtnh(tn,s)λδ'(s,c)m(ρ(s)r(s))1λλλ+1×λδ'(s,c)m(ρ(s)r(s))1λλλ+1w¯(s)Hλλ+1(tn,s)dsλ+1λ,

    利用Schwarz 不等式得

    G(tn)λ+1λ=1H(tn,T)Ttnh(tn,s)λ+1λδ'(s,c)m(ρ(s)r(s))1λλds1λ×1H(tn,T)Ttnλδ'(s,c)m(ρ(s)r(s))1λw¯λ+1λ(s)H(tn,s)ds,

    两边同除以F(tn),由(C2)

    G(tn)λ+1λF(tn)=1H(tn,T)×Ttnρ(s)r(s)h(t,s)λ+1(λmδ'(s,c))λds<+,

    这与方程(20)矛盾,所以假设(15)不成立。

    综合情形1和情形2的证明,由于方程(14)与(15)均不成立,所以原假设不成立, 从而x(t)为方程(1)的振动解。

    Z(t)满足引理1条件(Ⅱ)时,由于式(4)成立,由引理8可知,limt+x(t)=0,所求得证。

  • 3 例子

    下面给出2个例子来验证本文结果的有效性。

    例1在方程(1)中,取α=13,β=5,γ=7,a=0,b=1,c=0,d=1,r(t)=t2p(t,ξ)=4ξ3t2τ(t,ξ)=t+ξ3q(t,ξ)=64ξt3δ(t,ξ)=t+ξ2P=23,则方程(1)为

    t2(x(t)+014ξ3t2x3t+ξ3dξ)5'+0164ξt3x7t+ξ2dξ=0,tt0>1
    (21)

    由于

    t0r-1β(s)ds=+
    p(t)=abp(t,ξ)dξ=014ξ3t2dξ=23t223
    limt+p(t)=0,
    t0+v+1r(u)u+cdq(s,ξ)dξds1βdudv=t0+v+1u2u+0164ξs3dξds15dudv=+

    易得方程(21)满足条件(H1)~(H5)及式(4)。

    ρ(t)=t2,k=2,η=12λ=min{β,γ}=5,则

    Q1(t)=1-13×21-13+(21-13-1)2237×0164ξt3dξ=43-59×223732t3,
    Q2(t)=ρ'(t)ρ(t)=2t,

    limsupt+Ttρ(s)Q1(s)(ηδ(s,c))γ-Q2(s)λ+1λ+1ρ(s)r(s)δ'(s,s)λds=limsupt+Tts243-59×223732s3s47-13s6s4125ds=+

    从而由定理1知,方程(21)的任意解振动或收敛于0。

    注1由于方程(21)超出了文献[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]相应结论的适用范围,所以,利用文献[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]无法得到方程(21)的振动性质。

    例2方程(1)中,取α=13,β=3,γ=5a=12,b=1,c=0,d=1,r(t)=t2p(t,ξ)=4ξ3t2τ(t,ξ)=t+ξ3τ(t,ξ)=t+ξ3q(t,ξ)=32ξt5δ(t,ξ)=t+ξ2P=23,则方程(1)为

    t2x(t)+014ξ3t2x13t+ξ3dξ3'+0132ξt5x5t+ξ2dξ=0,tt0>1
    (22)

    t0r-1β(s)ds=+p(t)=abp(t,ξ)dξ=014ξ3t2dξ=23t223,limt+p(t)=0,

    T+v+1r(u)u+cdq(s,ξ)dξds1βdudv=T+v+1u2u+0132ξs5dξds13dudv=+,

    易得方程(22)满足条件(H1)~(H5)及式(4)。

    ρ(t)=1,k=2,η=12,H(t,s)=(t-s)4,则

    Q1(t)=1-α21-α+(21-α-1)kPγ×cdq(t,ξ)dξ=43-59×223516t5,
    Q2(t)=ρ'(t)ρ(t)=0λ=min{β,γ}=3h(t,s)=4

    所以

    limsupt+1H(t,T)TtH(t,s)ρ(s)Q1(s)×(ηδ(s,c))γ-h(t,s)λ+1λ+1ρ(s)r(s)mλ(δ'(s,c))λds=limsupt+1(t-T)4Tt(t-s)443-59×2235×16s5s45-8s2m3ds=+

    从而由定理2可得,方程(22)的任意解振动或收敛于0。

    注2显然无法从文献[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]的相关结论中得到例2的结论。

  • 参考文献(References)

    • 1

      PHILOS C G. On a Kamenev’s integral criterion for oscillation of linear differential equations of second order[J]. Annals Polonais Mathematics,1983, 21:175-194.

    • 2

      PHILOS C G.Oscillation theorems for linear differential equations of second order[J]. Archiv Der Mathematik,1989, 53(5):482-492.doi:10.1007/bf01324723

    • 3

      SUN Y G, MENG F W. Note on the paper of Dzurina and Stavroulakis[J]. Applied Mathematics and Computation, 2006, 174(2):1634-1641.doi:10.1016/j.amc.2005.07.008

    • 4

      BACULÍKOVÁ B,LI T X, DŽURINA J.Oscillation theorems for second-order superlinear neutral differential equations [J]. Mathematica Slovaca, 2013, 63(1):123-134.doi:10.2478/s12175-012-0087-9

    • 5

      LIU H D, FAN W M, LIU P C.Oscillation and asymptotic analysis on a new generalized Emden-Fowler equation[J]. Applied Mathematics and Computation, 2012, 219(5):2739-2748.

    • 6

      AGARWAL R P, BOHNER M, LI T X, et al.Oscillation of second-order Emden-Fowler neutral delay differential equations[J]. Annali di Matematica Pura ed Applicata, 2014,193(6):1861–1875.doi:10.1007/s10231-013-0361-7

    • 7

      WU Y Z,YU Y H, ZHANG J M, et al.Oscillation criteria for second order Emden-Fowler functional differential equations of neutral type[J]. Journal of Inequalities and Applications, 2016, 2016(1):328-338.doi:10.1186/s13660-016-1268-9

    • 8

      黄记洲,符策红.广义Emden-Fowler方程的振动性[J]. 应用数学学报,2015,38(6):1126-1135.

      HUANG J Z, FU C H. Oscillation criteria of generalized Emden-Fowler equations[J]. Acta Mathematicae Applicatae Sinica, 2015, 38(6):1126-1135.

    • 9

      杨甲山, 覃桂茳.一类二阶微分方程新的Kamenev型振动准则[J]. 浙江大学学报(理学版),2017, 44(3):274-280.

      YANG J S, QIN G J. Kamenev-type oscillation criteria for certain second-order differential equations[J]. Journal of Zhejiang University(Science Edition), 2017, 44(3):274-280.

    • 10

      BACULÍKOVÁ B, DŽURINA J.Oscillation of third-order neutral differential equations[J]. Mathematical and Computer Modelling, 2010, 52(1):215-226.doi:10.1016/j.mcm.2010.02.011

    • 11

      THANDAPANI E, LI T X.On the oscillation of third-order quasi-linear neutral functional differential equations[J]. Archivum Mathematicum, 2011, 47 (3) :181-199.

    • 12

      LI T X, ZHANG C H.Properties of third-order half-linear dynamic equations with an unbounded neutral coefficient[J]. Advances in Difference Equations, 2013 , 2013(1):1-8.doi:10.1186/1687-1847-2013-333

    • 13

      JIANG Y, LI T X.Asymptotic behavior of a third-order nonlinear neutral delay differential equation[J]. Journal of Inequalities and Applications, 2014, 2014(1):512.doi:10.1186/1029-242x-2014-512

    • 14

      YANG L L, XU Z T. Oscillation of certain third-order quasilinear neutral differential equation[J]. Mathematica Slovaca, 2014, 64(1):85-100.doi:10.2478/s12175-013-0189-z

    • 15

      JIANG Y, JIANG C M, LI T X. Oscillatory behavior of third-order nonlinear neutral delay differential equations[J]. Advances in Difference Equations, 2016 , 2016(1):171.doi:10.1186/s13662-016-0902-7

    • 16

      YANG X J. Oscillation criterion for a class of quasilinear differential equations[J]. Applied Mathematics and Computation, 2004, 153(1):225-229.doi:10.1016/s0096-3003(03)00626-x

惠远先

机 构:

1. 广州大学 数学与信息科学学院,广东 广州510006

2. 普洱学院 数学与统计学院,云南 普洱 665000

Affiliation:

1. School of Mathematics and Information Science, Guangzhou University, Guangzhou 510006,China

2. School of Mathematics and Statistics, Puer University, Puer 665000, Yunnan Province, China

邮 箱:huiyuanxian1983@126.com.

作者简介:惠远先(1983-),http://orcid.org/0000-0002-6081-9435,男,硕士,讲师,主要从事微分方程动力系统和生物数学研究,E-mail:huiyuanxian1983@126.com.

李培峦

机 构:河南科技大学 数学与统计学院,河南 洛阳471023

Affiliation:School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang 471023, Henan Province, China

戴丽华

机 构:普洱学院 数学与统计学院,云南 普洱 665000

Affiliation:School of Mathematics and Statistics, Puer University, Puer 665000, Yunnan Province, China

image /
  • 参考文献(References)

    • 1

      PHILOS C G. On a Kamenev’s integral criterion for oscillation of linear differential equations of second order[J]. Annals Polonais Mathematics,1983, 21:175-194.

    • 2

      PHILOS C G.Oscillation theorems for linear differential equations of second order[J]. Archiv Der Mathematik,1989, 53(5):482-492.doi:10.1007/bf01324723

    • 3

      SUN Y G, MENG F W. Note on the paper of Dzurina and Stavroulakis[J]. Applied Mathematics and Computation, 2006, 174(2):1634-1641.doi:10.1016/j.amc.2005.07.008

    • 4

      BACULÍKOVÁ B,LI T X, DŽURINA J.Oscillation theorems for second-order superlinear neutral differential equations [J]. Mathematica Slovaca, 2013, 63(1):123-134.doi:10.2478/s12175-012-0087-9

    • 5

      LIU H D, FAN W M, LIU P C.Oscillation and asymptotic analysis on a new generalized Emden-Fowler equation[J]. Applied Mathematics and Computation, 2012, 219(5):2739-2748.

    • 6

      AGARWAL R P, BOHNER M, LI T X, et al.Oscillation of second-order Emden-Fowler neutral delay differential equations[J]. Annali di Matematica Pura ed Applicata, 2014,193(6):1861–1875.doi:10.1007/s10231-013-0361-7

    • 7

      WU Y Z,YU Y H, ZHANG J M, et al.Oscillation criteria for second order Emden-Fowler functional differential equations of neutral type[J]. Journal of Inequalities and Applications, 2016, 2016(1):328-338.doi:10.1186/s13660-016-1268-9

    • 8

      黄记洲,符策红.广义Emden-Fowler方程的振动性[J]. 应用数学学报,2015,38(6):1126-1135.

      HUANG J Z, FU C H. Oscillation criteria of generalized Emden-Fowler equations[J]. Acta Mathematicae Applicatae Sinica, 2015, 38(6):1126-1135.

    • 9

      杨甲山, 覃桂茳.一类二阶微分方程新的Kamenev型振动准则[J]. 浙江大学学报(理学版),2017, 44(3):274-280.

      YANG J S, QIN G J. Kamenev-type oscillation criteria for certain second-order differential equations[J]. Journal of Zhejiang University(Science Edition), 2017, 44(3):274-280.

    • 10

      BACULÍKOVÁ B, DŽURINA J.Oscillation of third-order neutral differential equations[J]. Mathematical and Computer Modelling, 2010, 52(1):215-226.doi:10.1016/j.mcm.2010.02.011

    • 11

      THANDAPANI E, LI T X.On the oscillation of third-order quasi-linear neutral functional differential equations[J]. Archivum Mathematicum, 2011, 47 (3) :181-199.

    • 12

      LI T X, ZHANG C H.Properties of third-order half-linear dynamic equations with an unbounded neutral coefficient[J]. Advances in Difference Equations, 2013 , 2013(1):1-8.doi:10.1186/1687-1847-2013-333

    • 13

      JIANG Y, LI T X.Asymptotic behavior of a third-order nonlinear neutral delay differential equation[J]. Journal of Inequalities and Applications, 2014, 2014(1):512.doi:10.1186/1029-242x-2014-512

    • 14

      YANG L L, XU Z T. Oscillation of certain third-order quasilinear neutral differential equation[J]. Mathematica Slovaca, 2014, 64(1):85-100.doi:10.2478/s12175-013-0189-z

    • 15

      JIANG Y, JIANG C M, LI T X. Oscillatory behavior of third-order nonlinear neutral delay differential equations[J]. Advances in Difference Equations, 2016 , 2016(1):171.doi:10.1186/s13662-016-0902-7

    • 16

      YANG X J. Oscillation criterion for a class of quasilinear differential equations[J]. Applied Mathematics and Computation, 2004, 153(1):225-229.doi:10.1016/s0096-3003(03)00626-x