en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
LAPOINTEL.How phenology influences physiology in deciduous forest spring ephemerals[J]. Physiologia Plantarum, 2001, 113 (2):151-157.DOI:10.1034/j.1399-3054.2001.1130201.x
参考文献 2
LIUX L, LIJ H, YANGY F, et al.Floral development of Gymnospermium microrrhynchum (Berberidaceae) and its systematic significance in the nandinoideae[J]. Flora-Morphology Distribution Functional Ecology of Plants, 2017(228): 10-16.
参考文献 3
胡珂, 韦佳玉.延胡索块茎生长发育过程观察[J]. 安徽中医药大学学报,2014, 33(4):78-80.DOI:10.3969/j.issn.2095-7246.2014.04.026
HUK, WEIJ Y.Observation of growth process of Corydalis yanhusuo tubers[J]. Journal of Anhui Traditional Chinese Medical College, 2014,33(4):78-80.DOI:10.3969/j.issn.2095-7246.2014.04.026
参考文献 4
KHODOROVAN V, MIROSLAVOVE A, SHAVARDAA L, et al.Bud development in corydalis (Corydalis bracteata) requires low temperature: A study of developmental and carbohydrate changes[J]. Annals of Botany, 2010,105(6): 891–903.DOI:10.1093/aob/mcq076
参考文献 5
王绍明, 张霞, 周玲玲.小檗科植物牡丹草的核型研究[J].石河子大学学报(自然科学版),2000,4(4):315-316.DOI:10.3969/j.issn.1007-7383.2000.04.015
WANGS M, ZHANGX, ZHOUL L.Karyotype analysis of Leontice incerta Berberidaceae[J]. Journal of Shihezi University (Natural Science), 2000,4(4):315-316.DOI:10.3969/j.issn.1007-7383.2000.04.015
参考文献 6
廖矛川, 王有为, 肖培根.江南牡丹草的化学成分研究[J].武汉植物学研究, 2001, 19(6): 513-516.DOI:10.3969/j.issn.2095-0837.2001.06.011
LIAOM C, WANGY W, XIAOP G.Study on bioactive compounds of Leontice kiangnanensis[J]. Journal of Wuhan Botanical Research, 2001, 19(6): 513- 516.DOI:10.3969/j.issn.2095-0837.2001.06.011
参考文献 7
朱俊义, 张力凡, 沈鹏, 等.榛属 ( 桦木科) 花序及花的形态发生[J]. 植物分类与资源学报, 2014,36 (4) : 433-442.DOI:10.7677/ynzwyj201413215
ZHUJ Y, ZHANGL F, SHENP, et al.The morphogenesis of inflorescence and flower in Corylus (Betulaceae) [J]. Plant Diversity and Resources 2014, 36 (4): 433-442.DOI:10.7677/ynzwyj201413215
参考文献 8
杨允菲,祝廷成.植物生态学[M]: 北京:高等教育出版社, 2011: 28-33.
YANG, Y F, ZHUY C. Plant Ecology[M]. Beijing: Higher Education Press, 2011: 28-33.
参考文献 9
CLARKG E.Effects of storage temperature and duration on the dormancy of Sandersonia aurantiaca tubers[J]. New Zealand Journal of Crop and Horticultural Science, 1995, 23 (4) :455-460.
参考文献 10
HALLA J, CATLEYJ L, WALTONE F.The effect of forcing temperature on peony shoot and flower development[J]. Scientia Horticulturae, 2007, 113(2): 188-195.DOI:10.1016/j.scienta.2007.03.001
参考文献 11
CHRISTIAENSA, DHOOGHEE, PINXTEREND, et al. Flower development and effects of a cold treatment and a supplemental gibberellic acid application on flowering of Helleborus niger and Helleborus x ericsmithii[J]. Scientia Horticulturae, 2012, 136(2): 145-151.
参考文献 12
RUITERSC.Biomass and resource allocation patterns within the bulb of the perennial geophyte Huemanthus pubescens L. subsp. pubescens (Amaryllidaceae) in a periodic arid environment of lowland fynbos[J]. South Africa Journal of Arid Environments, 1995, 31(3): 311-323.
参考文献 13
MOLINAR V, VALEROM, NAVARROY, et al.Temperature effects on flower formation in saffron (Crocussativus L.) [J]. Electrical Systems for Aircraft Railway & Ship Propulsion, 2005, 103(3): 361-379.DOI:10.1016/j.scienta.2004.06.005
参考文献 14
MOLINAR V, VALEROM, NAVARROY, et al.The effect of time of corm lifting and duration of incubation at inductive temperature on flowering in the saffron plant (Crocus sativus L.) [J]. Scientia Horticulturae,2004, 103(1): 79-91.DOI:10.1016/j.scienta.2004.04.008
参考文献 15
KAMENETSKYR, ZEMAHH, RANWALAA P, et al. Water status and carbohydrate pools in tulip bulbs during dormancy release[J]. New Phytologist, 2010, 158(1): 109-118.DOI:10.1046/j.1469-8137.2003.00719.x
参考文献 16
MOE R, WICKSTROMA.The effect of storage temperature on shoot growth, flowering, and carbohydrate metabolism in tulip bulbs[J]. Physiologia Plantarum, 2010, 28(1): 81-87.DOI:10.1111/j.1399-3054.1973.tb01155.x
参考文献 17
NOY-PORATT, FLAISHMANM A, ESHELA, et al.Florogenesis of the mediterranean geophyte Narcissus tazetta and temperature requirements for flower initiation and differentiation[J]. Scientia Horticulturae,2009, 120(1): 138-142.DOI:10.1016/j.scienta.2008.09.016
参考文献 18
FENGY, ZHUL, PANT, et al. Characterization of summer dormancy in Narcissus tazetta var. Chinensis and the role of NTFTS in summer dormancy and flower differentiation[J]. Scientia Horticulturae, 2015, 183:109-117.DOI:10.1016/j.scienta.2014.11.013
参考文献 19
张继娜.郁金香花芽分化的观察与研究[J]. 甘肃农业大学学报, 2006, 41(4): 41-44.DOI:10.3969/j.issn.1003-4315.2006.04.011
ZHANGJ N.Observation and research on flower bud differentiation of tulip in Lanzhou[J]. Journal of Gansu Agricultural University, 2006,41(4): 41-44.DOI:10.3969/j.issn.1003-4315.2006.04.011
参考文献 20
LIUX L, LIJ H, ZHUJ Y, et al.Floral differentiation and growth rhythm of rhizome buds of the spring ephemeroid plant Adonis amurensis Regel et Radde[J]. Phyton-International Journal of Experimental Botany, 2016 (86): 297-304.
参考文献 21
万清林, 刘鸣远.侧金盏花成株年生长节律生理特性的研究[J].植物研究, 1996,16(3):351-355.
WANQ L, LIUM Y.Study on annual growth rhythm and physiological character of mature plants of Adonis Amurensis[J]. Bulletin of Botanical Research,1996, 16(3):351-355.
参考文献 22
陆霞梅, 周长芳, 安树青,等.植物的表型可塑性、异速生长及其入侵能力[J]. 生态学杂志, 2007, 26(9):1438- 1444.
LUX M, ZHOUC F, ANS Q, et al.Phenotypic plasticity, allometry and invasiveness of plants[J]. Chinese Journal of Ecology,2007,26(9):1438- 1444.DOI:10.1016/S1872-2075(07)60055-7
参考文献 23
LABARBERAM.Analyzing body size as a factor in ecology and evolution[J]. Annual Review of Ecology and Systematics,1989, 20(20): 97- 117.DOI:10.1146/annurev.es.20.110189.000525
参考文献 24
VRETAREV, WEISNERS E B,STRANDJ A, et al.Phenotypic plasticity in Phragmites australis as a functional response to water depth[J]. Aquatic Botany, 2001,69(2): 127- 145.DOI:10.1016/s0304-3770(01)00134-6
参考文献 25
李博.生态学[M]. 北京:高等教育出版社,2000: 64-87.
LIB. Ecology[M]. Beijing: Higher Education Press,2000: 64-87.
参考文献 26
周婵, 杨允菲.松嫩平原两个生态型羊草叶构件异速生长规律[J]. 草业学报, 2006, 15(5): 76-81.DOI:10.3321/j.issn:1004-5759.2006.05.012
ZHOU C, YANG Y F, Allometry regulation of leaf module for two ecotypes of Leymus chinensis in Songnen China[J]. Acta Prataculturae Sinica, 2006, 15(5): 76-81.DOI:10.3321/j.issn:1004-5759.2006.05.012
参考文献 27
杨允菲,张宝田,李建东.松嫩平原蒙古蒿种群无性系分株的生长与生物量分配规律[J].草业学报,2003,12(1): 11-17.DOI:10.3321/j.issn:1004-5759.2003.01.003
YANGY F, ZHANGB T, LIJ D.The regulation of growth and biomass allocation on clonal ramets of Artmisia mongolica population on the Songnen plain in China[J]. Acta Prataculturae Sinica, 2003, 12(1): 11-17.DOI:10.3321/j.issn:1004-5759.2003.01.003
目录 contents

    摘要

    采用解剖镜、扫描电镜技术,对长白山早春类短命植物牡丹草地下芽形态分化进行了观察,并采用游标卡尺测定各阶段芽体大小,研究地下芽的生长发育节律。发现牡丹草地上生活周期结束后,地下贮藏器官需要休眠2个月左右,于7月中下旬,地下芽开始出现形态分化和发育。其进程可分为萌芽期、花序原基分化期、花序形成期和花器官分化期4个时期,历经2个月左右,最终以发育成熟的花序进行越冬休眠。连续测定和相关分析表明,在整个夏眠期,牡丹草地下芽的茎高、芽长、芽径均随时间指数生长,茎高和芽长、芽径之间以及芽长与芽径之间呈幂函数规律异速生长,且相关系数均达到极显著水平。 牡丹草块茎需短暂休眠后完成地下芽的形态建成,地下芽茎高、芽长和芽径的增长具有不同步性和阶段性优先伸长的异速生长特性。

    Abstract

    In order to reveal the individual development pattern of underground bud of Gymnospermium microrrhynchum, a spring ephemeroid plant from the Changbai Mountains, China, we have observed the organogenesis and growth of underground buds. The development process and growth rhythm of underground buds were observed and studied by anatomic and scanning electron microscope micrography observation, and the buds size was determinated through regular excavating underground tubers of G. microrrhynchum in summer dormancy. Our results showed that the tubers of G. microrrhynchum switched to dormancy for two months after plants died at the end of May, and bud differentiation began in mid-to-late of July. The differentiation period was divided into sprout stage, inflorescence primordium differentiation, inflorescence formative and floral organ differentiation stage. The whole process would take about two months. When the buds finished morphogenesis, they continued underground growth, and went into dormancy by forming mature inflorescences ultimately. During the entire summer dormancy, the stalk height, bud length and bud diameter of the underground bud of G. microrrhynchum grew exponentially. Meanwhile, there was significant allometric growth in the form of a power function between the stalk height and bud length, bud diameter and length and bud diameter. So we have got the conclusion that the tubers of G. microrrhynchum need short dormancy to complete underground bud formation. And, there is a significant allometric relationship between periodic increases in stalk height, bud elongation and bud diameter increase.

    早春类短命植物是一类生长在温带落叶阔叶林及针阔混交林下的地下芽植物,具有在冰雪初融时开花、结实,于林分郁闭后休眠的生活史特[1,2]。这些植物除冬眠外,还具有夏眠现[3,4]。现有文献中,针对植物冬眠特征的相关研究报道较多,对天然林下早春类短命植物在夏眠期内地下芽的生长与发育状况的研究较少,而这些鲜为人知的生物学与生态学特性对于该类群趋同适应及进化的深入研究具有重要的科学意义。

    牡丹草属(Gymnospermium microrrhynchum)为小檗科,多年生草本植物,是长白山区林下早春草本植物层片的重要组成之一,是典型的早春类短命植物,主要分布于吉林、辽宁海拔约300~1 000 m的林下或林缘;朝鲜也有少量分[5]。4月初积雪融化时牡丹草顶冰萌发,生长发育迅速,萌发后第二天便可开花,花期长约1个月,花序大、色彩艳丽,具有一定的观赏价值。5月末6月初,林冠层郁闭时植株地上部分即行枯萎,以发达的块茎度过漫长的夏眠和冬眠期。年生活周期40~60 d,其生育周期能很好地衔接生态系统的能量流和物质流,具有十分重要的生态功能,是研究植物生态适应的理想材料,然而目前对该植物的研究仅限于染色体核型分[5]、化学成[6]等,对其夏眠期地下个体发育特征的研究尚未见报道。牡丹草从顶花破土到雪融开花,说明该植物在夏眠期并未真正休眠,而是在完成地下芽的形态建成。有关夏眠期该植物地下芽的萌动、花分化进程、形态特征,以及芽生长规律等情况迄今未见报道。本文以夏眠期的牡丹草块茎为试材,通过定期取样,解剖观察地下芽形态发生发育及芽体的生长情况,揭示地下芽形态建成特征及个体发育规律。研究结果可为早春类短命植物进化适应机理的深入研究积累科学数据。

  • 1 研究材料与方法

  • 1.1 研究材料

    本研究以早春类短命植物牡丹草为实验材料,于2014年5月19日在长白山脉的驮道岭(41°37′55″N~41°37′59″N,125°55′45″E~125°55′59″E,海拔700~750 m),待牡丹草地上植株枯萎后将其块茎挖出800株左右,移植在通化师范学院实践基地(41°44′47.04″N, 125°58′49.63″E, 海拔429 m)的栽培床中,用于后续连续取样。

  • 1.2 研究方法

    从5月19日至7月20日,间隔7 d取样一次,每次取样5个块茎,观察块茎是否萌芽。块茎萌芽后,从7月21日至9月25日,间隔3 d取样一次,每次取8~12个块茎;从9月25日至11月4日间隔10 d取样一次,每次取8~12个块茎。将块茎上的小芽切下,先用游标卡尺测量茎高、芽长、芽径,再用FAA固定液(70 %乙醇∶甲醛∶冰乙酸=90:5:5(体积比))固定48 h以上, 解剖观察并记录地下芽的发育期,再将其放入体积分数为70%的乙醇中保存;用扫描电镜观察其形态变[7]

  • 1.3 数据处理

    采用SPSS17.0软件对不同时期测定的茎高、芽长、芽径分别进行One-way ANOVA分析,并做Duncan多重比较。对茎高、芽长、芽径的生长规律进行回归与相关分析,在线性(y=a+bx)、指数(y=aebx)、幂函数(y=axb)间选取相关系数最大的作为其变化规律模型。

  • 2 结果与分析

  • 2.1 牡丹草地下芽形态分化特征分析

    5月中下旬牡丹草地上部分枯萎后,地下贮藏器官块茎需进行2个月左右的休眠,于7月中下旬开始萌生新芽(见图1-1)。经扫描电镜观察可见,萌芽期块茎顶端的生长点外面包有2层芽苞叶(见图1-1~1-3),剥去芽苞叶后在半月形的叶片原基叶腋处可见球形花序原基(见图1,2;图2-1)。花序先端的生长点继续分裂,以螺旋向顶的方式顺序分化出半月形的苞片原基(见图2-2~2-4),苞片原基叶腋处依次分化出球形花原基(见图2,3,4,5~2-7),随后花序上的花原基开始分化出各部花器官(见图2,3,4,5,6,7,8),到9月末,幼花序分化完成。此后花序继续发育,发育成熟的花序进入冬眠(见图1:(4)~(6);图2:(9))。经连续取样解剖观察知,牡丹草地下芽分化进程历经2个月左右,其分化过程可分为萌芽期(7月19日―7月23日)、花序原基分化期(7月21日―7月31日)、花序形成期(7月29日―9月20日)、花器官分化期(8月7日―9月20日)4个时期。

    图1
                            牡丹草地下芽不同发育阶段的形态特征

    图1 牡丹草地下芽不同发育阶段的形态特征

    Fig.1 Morphological characteristics of underground buds of G. microrrhynchum in different development stages

    注:1.块茎于7月中下旬萌生新芽;2.剥掉芽苞叶,可见地下芽已分化出叶片原基和花序原基;3~6.不同发育阶段的地下芽。C—芽苞叶;LP,叶原基;IA—花序生长点;UB—地下芽;B—芽;S—茎,比例尺=1 cm。

    NOTE: 1.New buds on the tubers in late July; 2. The leaf primordia and inflorescence primordium on the underground bud with cataphyll removed; 3-6. Buds at different developmental stages.C—Cataphyll; LP—Leaf primodium; IA—Inflorescence apex; UB—Underground bud; B—Bud; S—Stalk;Scale bars =1 cm.

    图2
                            扫描电子显微镜观察牡丹草地下芽的形态发生与发育

    图2 扫描电子显微镜观察牡丹草地下芽的形态发生与发育

    Fig. 2 Initiation and development of underground buds of G. microrrhynchum under SEM

    注:1.花序先端及叶原基; 2~4.苞片螺旋向顶发生;5~7.苞片叶腋处分化出花原基; 8.花器官先后发生;9.花序发育成熟。IA—花序先端; LP—叶原基; B—苞片; FP—花原基; rl—去掉叶片;rB—去掉苞片;rIA—去掉花序先端。比例尺: A,E=100 μm; B, D=200 μm; C, F =300 μm; H,I=500 μm。

    NOTE: 1. Inflorescence apex and leaf primordium; 2-4. Acropetal initiation of bracts; 5-7. Initiation of floral primordia in the axil of subtending bracts;8. Young inflorescence with most bracts removed and differentiation of floral primordia on the inflorescence; 9. Older inflorescence with bracts and inflorescence apex removed.IA—Inflorescence apex; LP—Leaf primodium; B—Bract; FP—Floral primordium; rL—Leaf removed; rB—Bract removed; rIA—Inflorescence apex removed.Scale bars: A,E=100 μm; B, D=200 μm; C, F=300 μm; H,I=500 μm.

    图3
                            牡丹草地下芽各指标间及其与生长时间的拟合曲线

    图3 牡丹草地下芽各指标间及其与生长时间的拟合曲线

    Fig. 3 Relationship between growth time and different growth indexes of underground buds and their matched curves of G. microrrhynchum

  • 2.2 牡丹草地下芽生长特征分析

    由表1知,夏眠期牡丹草地下芽逐渐伸长增粗,不同发生发育阶段,茎高、芽长和芽径的生长表现出相似的规律。从萌芽期(V)至花序形成期(I2),茎高和芽长、芽径变化较为缓慢,各阶段未出现显著差异,而花器官分化期(F),茎高和芽长均显著增高增长,但芽径增粗并不明显。进入发育期(D1~D4)后,茎高、芽长和芽径开始出现(不同时段)显著变化(见表1)。另外,从表1中的地下芽增长速率可以看出,夏眠期地下芽茎高、芽长、芽径的生长速率具有相似的波动变化规律。在地下芽形态分化阶段(V~F),芽体各部位的生长速率均较小,在花序形成期(I2),芽径生长速率出现明显减慢,而芽长的增长速率则明显加快,说明在花序形成期(I2),地下芽的生长以芽伸长为主。当地下芽完成形态分化进入发育阶段(D1~D4)时,出现2次生长高峰,但不同部位生长高峰的时间不同。其中,茎高的增长高峰出现在D1时期和D3时期,D3时期芽长增长速率最快为2 649.000 µm·d-1。芽长和芽径的增长高峰均出现在D1和D4期。说明牡丹草地下芽茎高、芽长和芽径的增长具有不同步性和阶段性优先伸长的异速生长特性。

    表1 牡丹草地下芽不同时期芽体生长数量特征

    Table 1 Quantitative characteristics of underground buds of G. microrrhynchum at different growth phases

    取样

    日期

    Sampling

    date

    生长

    阶段

    Growth

    stage

    茎高均值Stalk height mean/cm

    生长速率

    Growth rate/(μm·d-1)

    芽长均值

    Bud length mean/cm

    生长速率

    Growth rate(μm·d-1)

    芽径均值

    Bud diameter mean/cm

    生长速率

    Growth rate(μm·d-1)

    7.21V0.184±0.053a0.0000.134±0.046a0.0000.086±0.025a0.000
    7.29I10.220±0.102a45.0000.149±0.038a18.6110.097± 0.022a13.333
    8.15I20.507±0.159a33.3330.234±0.057a55.9440.168± 0.052ab7.556
    9.22F2.104±0.470b67.0000.390±0.066b28.0280.199± 0.061bc6.583
    9.30D12.478±0.901b467.3750.601±0.048c262.8750.247± 0.024bc60.500
    10.8D22.544±0.587b83.1250.614±0.051c16.8750.272± 0.032cd31.250
    10.23D36.518±1.709c2 649.0000.878±0.147cd175.6670.321± 0.046de32.833
    11.4D48.291±1.094d1 477.7781.201±0.239d269.4440.399± 0.061e64.931

    注:不同的字母a~d表示不同发育阶段在P<0.05水平上差异显著。V为萌芽期;I1为花序原基分化期;I2为花序形成期;F为花器官分化期;D1~D4为地下芽的生长阶段。

    NOTE: a~d means followed by different letters are significantly different at P< 0.05 level. V—Sprouted phase; I1—Initial stage of inflorescence differentiation; I2—Inflorescence formative; F—Floral organ differentiation stage; D1 to D4—Different developmental stages.

  • 2.3 牡丹草地下芽生长规律分析

    经回归分析与显著性检验可知,牡丹草地下芽的茎高、芽长、芽径随生长时间的延长呈指数形式增长,相关系数r分别为0.995 8,0.986 5和0.991 2,均达到极显著水平。茎高与芽长、芽径之间及芽长和芽径之间呈幂函数异速生长关系,其相关系数也达极显著水平(r分别为0.950 5,0.90,0.932 4)(见图3);3个拟合方程的增长速率b值均小于1,表明在整个生长发育过程中,茎的增长速率总是快于芽,芽的增长速率总是快于芽径,说明地下芽具有优先伸长的特点。

  • 3 结论与讨论

    地下芽植物以休眠芽或更新芽埋在地面下以规避恶劣环境,是植物长期趋同适应的结[8]。在漫长的地下生活中,地下芽植物的贮藏器官并不一直处于休眠状态,而是在进行更[9]、花芽形态建[10,11]、营养物质再分[12]等复杂的生理生化活动。目前,已有大量研究报道了地下芽植物休眠期间贮藏器官保存、休眠解除及地下芽的发生发育。其中,对番红[13,14]、郁金[15,16]和水[17,18]等起源于干旱地区的植物报道较多,而有关林下早春类短命植物休眠期贮藏器官生理活动及地下芽发生发育的报道较少。本文研究了长白山林下早春类短命植物的优势种牡丹草夏眠期地下芽的形态建成及生长发育特征,结果表明,牡丹草地上植株死亡后块茎先进行2个月左右的休眠,于7月中下旬地下芽开始分化,其分化进程可分为萌芽期、花序原基分化期、花序形成期、花器官分化期4个时期,历经2个月左右,最终以发育成熟的花序越冬。

    此结果与贮藏器官同为块茎的早春类短命植物堇叶延胡索相[4],而与贮藏器官为鳞茎及根茎的早春类短命植物种类不同。据报道,郁金[19]、侧金盏[20,21]的贮藏器官在盛花期时即进行更新生长,进入夏眠期后,其贮藏器官没有休眠直接进行地下芽及繁殖器官的形态分化。虽然,不同贮藏器官类型的早春类短命植物地下芽分化进程有一定的差异,但均在冬眠前完成繁殖器官的分化与发育,这种在夏眠期完成繁殖器官分化的特征可能与该类植物的生物学特性、独特的生活史特征及对生长环境的趋同适应有关。夏眠期,该类植物利用当季储藏在贮藏器官中的营养物质完成地下芽及繁殖器官的分化与发育,为下一生长季提供保障,是其长期进化的一种适应策略。因此,对林下早春类短命植物来说,夏眠(即地上部死亡后至冬季土壤上冻期间)并不是防御逆境伤害的生理休眠,而是将生长转于地下以逃避光资源竞争的生态休眠,是早春类短命植物在林下生境可以生存与发展的一种“进化适应”。

    异速生长是指生物体某一特征的相对生长速率不同于第2种特征的相对生长速[22]。植物个体的异速生长是由物种本身固有的遗传性所决定[23], 是植物个体在长期适应自然选择压力和自身发育限制的过程中进化的结[24]。异速生长在生物界普遍存在,通常只对生长中的整体与部分,或部分与部分之间作对应研[25,26],其结果可反映植物生长与生物量分配、资源利用和异质环境的适应之间的关[27]。本研究结果表明,牡丹草地下芽夏眠期存在异速生长。茎与芽的生长,以及芽长与芽径之间存在幂函数异速生长关系,茎的增长速率快于芽,具有优先伸长的异速生长节律。此节律可能与地下芽不同生长发育时期内外因子的变化和作用有关。其异速生长的生理调节机制,及其与外界环境的关系有待进一步研究。

  • 参考文献(References)

    • 1

      LAPOINTE L.How phenology influences physiology in deciduous forest spring ephemerals[J]. Physiologia Plantarum, 2001, 113 (2):151-157.DOI:10.1034/j.1399-3054.2001.1130201.x

    • 2

      LIU X L, LI J H, YANG Y F, et al.Floral development of Gymnospermium microrrhynchum (Berberidaceae) and its systematic significance in the nandinoideae[J]. Flora-Morphology Distribution Functional Ecology of Plants, 2017(228): 10-16.

    • 3

      胡珂, 韦佳玉.延胡索块茎生长发育过程观察[J]. 安徽中医药大学学报,2014, 33(4):78-80.DOI:10.3969/j.issn.2095-7246.2014.04.026

      HU K, WEI J Y.Observation of growth process of Corydalis yanhusuo tubers[J]. Journal of Anhui Traditional Chinese Medical College, 2014,33(4):78-80.DOI:10.3969/j.issn.2095-7246.2014.04.026

    • 4

      KHODOROVA N V, MIROSLAVOV E A, SHAVARDA A L, et al.Bud development in corydalis (Corydalis bracteata) requires low temperature: A study of developmental and carbohydrate changes[J]. Annals of Botany, 2010,105(6): 891–903.DOI:10.1093/aob/mcq076

    • 5

      王绍明, 张霞, 周玲玲.小檗科植物牡丹草的核型研究[J].石河子大学学报(自然科学版),2000,4(4):315-316.DOI:10.3969/j.issn.1007-7383.2000.04.015

      WANG S M, ZHANG X, ZHOU L L.Karyotype analysis of Leontice incerta Berberidaceae[J]. Journal of Shihezi University (Natural Science), 2000,4(4):315-316.DOI:10.3969/j.issn.1007-7383.2000.04.015

    • 6

      廖矛川, 王有为, 肖培根.江南牡丹草的化学成分研究[J].武汉植物学研究, 2001, 19(6): 513-516.DOI:10.3969/j.issn.2095-0837.2001.06.011

      LIAO M C, WANG Y W, XIAO P G.Study on bioactive compounds of Leontice kiangnanensis[J]. Journal of Wuhan Botanical Research, 2001, 19(6): 513- 516.DOI:10.3969/j.issn.2095-0837.2001.06.011

    • 7

      朱俊义, 张力凡, 沈鹏, 等.榛属 ( 桦木科) 花序及花的形态发生[J]. 植物分类与资源学报, 2014,36 (4) : 433-442.DOI:10.7677/ynzwyj201413215

      ZHU J Y, ZHANG L F, SHEN P, et al.The morphogenesis of inflorescence and flower in Corylus (Betulaceae) [J]. Plant Diversity and Resources 2014, 36 (4): 433-442.DOI:10.7677/ynzwyj201413215

    • 8

      杨允菲,祝廷成.植物生态学[M]: 北京:高等教育出版社, 2011: 28-33.

      YANG, Y F, ZHU Y C. Plant Ecology[M]. Beijing: Higher Education Press, 2011: 28-33.

    • 9

      CLARK G E.Effects of storage temperature and duration on the dormancy of Sandersonia aurantiaca tubers[J]. New Zealand Journal of Crop and Horticultural Science, 1995, 23 (4) :455-460.

    • 10

      HALL A J, CATLEY J L, WALTON E F.The effect of forcing temperature on peony shoot and flower development[J]. Scientia Horticulturae, 2007, 113(2): 188-195.DOI:10.1016/j.scienta.2007.03.001

    • 11

      CHRISTIAENS A, DHOOGHE E, PINXTEREN D, et al. Flower development and effects of a cold treatment and a supplemental gibberellic acid application on flowering of Helleborus niger and Helleborus x ericsmithii[J]. Scientia Horticulturae, 2012, 136(2): 145-151.

    • 12

      RUITERS C.Biomass and resource allocation patterns within the bulb of the perennial geophyte Huemanthus pubescens L. subsp. pubescens (Amaryllidaceae) in a periodic arid environment of lowland fynbos[J]. South Africa Journal of Arid Environments, 1995, 31(3): 311-323.

    • 13

      MOLINA R V, VALERO M, NAVARRO Y, et al.Temperature effects on flower formation in saffron (Crocussativus L.) [J]. Electrical Systems for Aircraft Railway & Ship Propulsion, 2005, 103(3): 361-379.DOI:10.1016/j.scienta.2004.06.005

    • 14

      MOLINA R V, VALERO M, NAVARRO Y, et al.The effect of time of corm lifting and duration of incubation at inductive temperature on flowering in the saffron plant (Crocus sativus L.) [J]. Scientia Horticulturae,2004, 103(1): 79-91.DOI:10.1016/j.scienta.2004.04.008

    • 15

      KAMENETSKY R, ZEMAH H, RANWALA A P, et al. Water status and carbohydrate pools in tulip bulbs during dormancy release[J]. New Phytologist, 2010, 158(1): 109-118.DOI:10.1046/j.1469-8137.2003.00719.x

    • 16

      MOE R, WICKSTROM A.The effect of storage temperature on shoot growth, flowering, and carbohydrate metabolism in tulip bulbs[J]. Physiologia Plantarum, 2010, 28(1): 81-87.DOI:10.1111/j.1399-3054.1973.tb01155.x

    • 17

      NOY-PORAT T, FLAISHMAN M A, ESHEL A, et al.Florogenesis of the mediterranean geophyte Narcissus tazetta and temperature requirements for flower initiation and differentiation[J]. Scientia Horticulturae,2009, 120(1): 138-142.DOI:10.1016/j.scienta.2008.09.016

    • 18

      FENG Y, ZHU L, PAN T, et al. Characterization of summer dormancy in Narcissus tazetta var. Chinensis and the role of NTFTS in summer dormancy and flower differentiation[J]. Scientia Horticulturae, 2015, 183:109-117.DOI:10.1016/j.scienta.2014.11.013

    • 19

      张继娜.郁金香花芽分化的观察与研究[J]. 甘肃农业大学学报, 2006, 41(4): 41-44.DOI:10.3969/j.issn.1003-4315.2006.04.011

      ZHANG J N.Observation and research on flower bud differentiation of tulip in Lanzhou[J]. Journal of Gansu Agricultural University, 2006,41(4): 41-44.DOI:10.3969/j.issn.1003-4315.2006.04.011

    • 20

      LIU X L, LI J H, ZHU J Y, et al.Floral differentiation and growth rhythm of rhizome buds of the spring ephemeroid plant Adonis amurensis Regel et Radde[J]. Phyton-International Journal of Experimental Botany, 2016 (86): 297-304.

    • 21

      万清林, 刘鸣远.侧金盏花成株年生长节律生理特性的研究[J].植物研究, 1996,16(3):351-355.

      WAN Q L, LIU M Y.Study on annual growth rhythm and physiological character of mature plants of Adonis Amurensis[J]. Bulletin of Botanical Research,1996, 16(3):351-355.

    • 22

      陆霞梅, 周长芳, 安树青,等.植物的表型可塑性、异速生长及其入侵能力[J]. 生态学杂志, 2007, 26(9):1438- 1444.

      LU X M, ZHOU C F, AN S Q, et al.Phenotypic plasticity, allometry and invasiveness of plants[J]. Chinese Journal of Ecology,2007,26(9):1438- 1444.DOI:10.1016/S1872-2075(07)60055-7

    • 23

      LABARBERA M.Analyzing body size as a factor in ecology and evolution[J]. Annual Review of Ecology and Systematics,1989, 20(20): 97- 117.DOI:10.1146/annurev.es.20.110189.000525

    • 24

      VRETARE V, WEISNER S E B,STRAND J A, et al.Phenotypic plasticity in Phragmites australis as a functional response to water depth[J]. Aquatic Botany, 2001,69(2): 127- 145.DOI:10.1016/s0304-3770(01)00134-6

    • 25

      李博.生态学[M]. 北京:高等教育出版社,2000: 64-87.

      LI B. Ecology[M]. Beijing: Higher Education Press,2000: 64-87.

    • 26

      周婵, 杨允菲.松嫩平原两个生态型羊草叶构件异速生长规律[J]. 草业学报, 2006, 15(5): 76-81.DOI:10.3321/j.issn:1004-5759.2006.05.012

      ZHOU C, YANG Y F, Allometry regulation of leaf module for two ecotypes of Leymus chinensis in Songnen China[J]. Acta Prataculturae Sinica, 2006, 15(5): 76-81.DOI:10.3321/j.issn:1004-5759.2006.05.012

    • 27

      杨允菲,张宝田,李建东.松嫩平原蒙古蒿种群无性系分株的生长与生物量分配规律[J].草业学报,2003,12(1): 11-17.DOI:10.3321/j.issn:1004-5759.2003.01.003

      YANG Y F, ZHANG B T, LI J D.The regulation of growth and biomass allocation on clonal ramets of Artmisia mongolica population on the Songnen plain in China[J]. Acta Prataculturae Sinica, 2003, 12(1): 11-17.DOI:10.3321/j.issn:1004-5759.2003.01.003

刘雪莲

机 构:通化师范学院 生命科学学院,吉林 通化 134002

Affiliation:College of Life Science, Tonghua Normal University,Tonghua 134002, Jilin Province, China

邮 箱:liuxuelian1023@163.com.

作者简介:刘雪莲(1978—),ORCID:http://orcid.org/0000-0002-9758-9557 ,女,博士,副教授,主要从事植物种群生态学、植物资源多样性保护与利用研究,E-mail:liuxuelian1023@163.com.

张力凡

机 构:通化师范学院 生命科学学院,吉林 通化 134002

Affiliation:College of Life Science, Tonghua Normal University,Tonghua 134002, Jilin Province, China

秦佳梅

机 构:通化师范学院 生命科学学院,吉林 通化 134002

Affiliation:College of Life Science, Tonghua Normal University,Tonghua 134002, Jilin Province, China

杨允菲

机 构:东北师范大学 草地科学研究所 植被生态科学教育部重点实验室,吉林 长春130024

Affiliation:Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun 130024, China

角 色:通讯作者

Role:Corresponding author

邮 箱:yangyf@nenu.edu.cn.

作者简介:ORCID:http:// orcid.org/0000-0003-4319-6237 ,E-mail: yangyf@nenu.edu.cn.

朱俊义

机 构:通化师范学院 生命科学学院,吉林 通化 134002

Affiliation:College of Life Science, Tonghua Normal University,Tonghua 134002, Jilin Province, China

1008⁃9497-2019-46-2-202/alternativeImage/4a7807b7-2e1a-40e9-970a-b4071d50e12e-F001.jpg
1008⁃9497-2019-46-2-202/alternativeImage/4a7807b7-2e1a-40e9-970a-b4071d50e12e-F002.jpg
1008⁃9497-2019-46-2-202/alternativeImage/4a7807b7-2e1a-40e9-970a-b4071d50e12e-F003.jpg

取样

日期

Sampling

date

生长

阶段

Growth

stage

茎高均值Stalk height mean/cm

生长速率

Growth rate/(μm·d-1)

芽长均值

Bud length mean/cm

生长速率

Growth rate(μm·d-1)

芽径均值

Bud diameter mean/cm

生长速率

Growth rate(μm·d-1)

7.21V0.184±0.053a0.0000.134±0.046a0.0000.086±0.025a0.000
7.29I10.220±0.102a45.0000.149±0.038a18.6110.097± 0.022a13.333
8.15I20.507±0.159a33.3330.234±0.057a55.9440.168± 0.052ab7.556
9.22F2.104±0.470b67.0000.390±0.066b28.0280.199± 0.061bc6.583
9.30D12.478±0.901b467.3750.601±0.048c262.8750.247± 0.024bc60.500
10.8D22.544±0.587b83.1250.614±0.051c16.8750.272± 0.032cd31.250
10.23D36.518±1.709c2 649.0000.878±0.147cd175.6670.321± 0.046de32.833
11.4D48.291±1.094d1 477.7781.201±0.239d269.4440.399± 0.061e64.931

图1 牡丹草地下芽不同发育阶段的形态特征

Fig.1 Morphological characteristics of underground buds of G. microrrhynchum in different development stages

图2 扫描电子显微镜观察牡丹草地下芽的形态发生与发育

Fig. 2 Initiation and development of underground buds of G. microrrhynchum under SEM

图3 牡丹草地下芽各指标间及其与生长时间的拟合曲线

Fig. 3 Relationship between growth time and different growth indexes of underground buds and their matched curves of G. microrrhynchum

表1 牡丹草地下芽不同时期芽体生长数量特征

Table 1 Quantitative characteristics of underground buds of G. microrrhynchum at different growth phases

image /

1.块茎于7月中下旬萌生新芽;2.剥掉芽苞叶,可见地下芽已分化出叶片原基和花序原基;3~6.不同发育阶段的地下芽。C—芽苞叶;LP,叶原基;IA—花序生长点;UB—地下芽;B—芽;S—茎,比例尺=1 cm。

1.New buds on the tubers in late July; 2. The leaf primordia and inflorescence primordium on the underground bud with cataphyll removed; 3-6. Buds at different developmental stages.C—Cataphyll; LP—Leaf primodium; IA—Inflorescence apex; UB—Underground bud; B—Bud; S—Stalk;Scale bars =1 cm.

1.花序先端及叶原基; 2~4.苞片螺旋向顶发生;5~7.苞片叶腋处分化出花原基; 8.花器官先后发生;9.花序发育成熟。IA—花序先端; LP—叶原基; B—苞片; FP—花原基; rl—去掉叶片;rB—去掉苞片;rIA—去掉花序先端。比例尺: A,E=100 μm; B, D=200 μm; C, F =300 μm; H,I=500 μm。

1. Inflorescence apex and leaf primordium; 2-4. Acropetal initiation of bracts; 5-7. Initiation of floral primordia in the axil of subtending bracts;8. Young inflorescence with most bracts removed and differentiation of floral primordia on the inflorescence; 9. Older inflorescence with bracts and inflorescence apex removed.IA—Inflorescence apex; LP—Leaf primodium; B—Bract; FP—Floral primordium; rL—Leaf removed; rB—Bract removed; rIA—Inflorescence apex removed.Scale bars: A,E=100 μm; B, D=200 μm; C, F=300 μm; H,I=500 μm.

无注解

不同的字母a~d表示不同发育阶段在P<0.05水平上差异显著。V为萌芽期;I1为花序原基分化期;I2为花序形成期;F为花器官分化期;D1~D4为地下芽的生长阶段。

a~d means followed by different letters are significantly different at P< 0.05 level. V—Sprouted phase; I1—Initial stage of inflorescence differentiation; I2—Inflorescence formative; F—Floral organ differentiation stage; D1 to D4—Different developmental stages.

  • 参考文献(References)

    • 1

      LAPOINTE L.How phenology influences physiology in deciduous forest spring ephemerals[J]. Physiologia Plantarum, 2001, 113 (2):151-157.DOI:10.1034/j.1399-3054.2001.1130201.x

    • 2

      LIU X L, LI J H, YANG Y F, et al.Floral development of Gymnospermium microrrhynchum (Berberidaceae) and its systematic significance in the nandinoideae[J]. Flora-Morphology Distribution Functional Ecology of Plants, 2017(228): 10-16.

    • 3

      胡珂, 韦佳玉.延胡索块茎生长发育过程观察[J]. 安徽中医药大学学报,2014, 33(4):78-80.DOI:10.3969/j.issn.2095-7246.2014.04.026

      HU K, WEI J Y.Observation of growth process of Corydalis yanhusuo tubers[J]. Journal of Anhui Traditional Chinese Medical College, 2014,33(4):78-80.DOI:10.3969/j.issn.2095-7246.2014.04.026

    • 4

      KHODOROVA N V, MIROSLAVOV E A, SHAVARDA A L, et al.Bud development in corydalis (Corydalis bracteata) requires low temperature: A study of developmental and carbohydrate changes[J]. Annals of Botany, 2010,105(6): 891–903.DOI:10.1093/aob/mcq076

    • 5

      王绍明, 张霞, 周玲玲.小檗科植物牡丹草的核型研究[J].石河子大学学报(自然科学版),2000,4(4):315-316.DOI:10.3969/j.issn.1007-7383.2000.04.015

      WANG S M, ZHANG X, ZHOU L L.Karyotype analysis of Leontice incerta Berberidaceae[J]. Journal of Shihezi University (Natural Science), 2000,4(4):315-316.DOI:10.3969/j.issn.1007-7383.2000.04.015

    • 6

      廖矛川, 王有为, 肖培根.江南牡丹草的化学成分研究[J].武汉植物学研究, 2001, 19(6): 513-516.DOI:10.3969/j.issn.2095-0837.2001.06.011

      LIAO M C, WANG Y W, XIAO P G.Study on bioactive compounds of Leontice kiangnanensis[J]. Journal of Wuhan Botanical Research, 2001, 19(6): 513- 516.DOI:10.3969/j.issn.2095-0837.2001.06.011

    • 7

      朱俊义, 张力凡, 沈鹏, 等.榛属 ( 桦木科) 花序及花的形态发生[J]. 植物分类与资源学报, 2014,36 (4) : 433-442.DOI:10.7677/ynzwyj201413215

      ZHU J Y, ZHANG L F, SHEN P, et al.The morphogenesis of inflorescence and flower in Corylus (Betulaceae) [J]. Plant Diversity and Resources 2014, 36 (4): 433-442.DOI:10.7677/ynzwyj201413215

    • 8

      杨允菲,祝廷成.植物生态学[M]: 北京:高等教育出版社, 2011: 28-33.

      YANG, Y F, ZHU Y C. Plant Ecology[M]. Beijing: Higher Education Press, 2011: 28-33.

    • 9

      CLARK G E.Effects of storage temperature and duration on the dormancy of Sandersonia aurantiaca tubers[J]. New Zealand Journal of Crop and Horticultural Science, 1995, 23 (4) :455-460.

    • 10

      HALL A J, CATLEY J L, WALTON E F.The effect of forcing temperature on peony shoot and flower development[J]. Scientia Horticulturae, 2007, 113(2): 188-195.DOI:10.1016/j.scienta.2007.03.001

    • 11

      CHRISTIAENS A, DHOOGHE E, PINXTEREN D, et al. Flower development and effects of a cold treatment and a supplemental gibberellic acid application on flowering of Helleborus niger and Helleborus x ericsmithii[J]. Scientia Horticulturae, 2012, 136(2): 145-151.

    • 12

      RUITERS C.Biomass and resource allocation patterns within the bulb of the perennial geophyte Huemanthus pubescens L. subsp. pubescens (Amaryllidaceae) in a periodic arid environment of lowland fynbos[J]. South Africa Journal of Arid Environments, 1995, 31(3): 311-323.

    • 13

      MOLINA R V, VALERO M, NAVARRO Y, et al.Temperature effects on flower formation in saffron (Crocussativus L.) [J]. Electrical Systems for Aircraft Railway & Ship Propulsion, 2005, 103(3): 361-379.DOI:10.1016/j.scienta.2004.06.005

    • 14

      MOLINA R V, VALERO M, NAVARRO Y, et al.The effect of time of corm lifting and duration of incubation at inductive temperature on flowering in the saffron plant (Crocus sativus L.) [J]. Scientia Horticulturae,2004, 103(1): 79-91.DOI:10.1016/j.scienta.2004.04.008

    • 15

      KAMENETSKY R, ZEMAH H, RANWALA A P, et al. Water status and carbohydrate pools in tulip bulbs during dormancy release[J]. New Phytologist, 2010, 158(1): 109-118.DOI:10.1046/j.1469-8137.2003.00719.x

    • 16

      MOE R, WICKSTROM A.The effect of storage temperature on shoot growth, flowering, and carbohydrate metabolism in tulip bulbs[J]. Physiologia Plantarum, 2010, 28(1): 81-87.DOI:10.1111/j.1399-3054.1973.tb01155.x

    • 17

      NOY-PORAT T, FLAISHMAN M A, ESHEL A, et al.Florogenesis of the mediterranean geophyte Narcissus tazetta and temperature requirements for flower initiation and differentiation[J]. Scientia Horticulturae,2009, 120(1): 138-142.DOI:10.1016/j.scienta.2008.09.016

    • 18

      FENG Y, ZHU L, PAN T, et al. Characterization of summer dormancy in Narcissus tazetta var. Chinensis and the role of NTFTS in summer dormancy and flower differentiation[J]. Scientia Horticulturae, 2015, 183:109-117.DOI:10.1016/j.scienta.2014.11.013

    • 19

      张继娜.郁金香花芽分化的观察与研究[J]. 甘肃农业大学学报, 2006, 41(4): 41-44.DOI:10.3969/j.issn.1003-4315.2006.04.011

      ZHANG J N.Observation and research on flower bud differentiation of tulip in Lanzhou[J]. Journal of Gansu Agricultural University, 2006,41(4): 41-44.DOI:10.3969/j.issn.1003-4315.2006.04.011

    • 20

      LIU X L, LI J H, ZHU J Y, et al.Floral differentiation and growth rhythm of rhizome buds of the spring ephemeroid plant Adonis amurensis Regel et Radde[J]. Phyton-International Journal of Experimental Botany, 2016 (86): 297-304.

    • 21

      万清林, 刘鸣远.侧金盏花成株年生长节律生理特性的研究[J].植物研究, 1996,16(3):351-355.

      WAN Q L, LIU M Y.Study on annual growth rhythm and physiological character of mature plants of Adonis Amurensis[J]. Bulletin of Botanical Research,1996, 16(3):351-355.

    • 22

      陆霞梅, 周长芳, 安树青,等.植物的表型可塑性、异速生长及其入侵能力[J]. 生态学杂志, 2007, 26(9):1438- 1444.

      LU X M, ZHOU C F, AN S Q, et al.Phenotypic plasticity, allometry and invasiveness of plants[J]. Chinese Journal of Ecology,2007,26(9):1438- 1444.DOI:10.1016/S1872-2075(07)60055-7

    • 23

      LABARBERA M.Analyzing body size as a factor in ecology and evolution[J]. Annual Review of Ecology and Systematics,1989, 20(20): 97- 117.DOI:10.1146/annurev.es.20.110189.000525

    • 24

      VRETARE V, WEISNER S E B,STRAND J A, et al.Phenotypic plasticity in Phragmites australis as a functional response to water depth[J]. Aquatic Botany, 2001,69(2): 127- 145.DOI:10.1016/s0304-3770(01)00134-6

    • 25

      李博.生态学[M]. 北京:高等教育出版社,2000: 64-87.

      LI B. Ecology[M]. Beijing: Higher Education Press,2000: 64-87.

    • 26

      周婵, 杨允菲.松嫩平原两个生态型羊草叶构件异速生长规律[J]. 草业学报, 2006, 15(5): 76-81.DOI:10.3321/j.issn:1004-5759.2006.05.012

      ZHOU C, YANG Y F, Allometry regulation of leaf module for two ecotypes of Leymus chinensis in Songnen China[J]. Acta Prataculturae Sinica, 2006, 15(5): 76-81.DOI:10.3321/j.issn:1004-5759.2006.05.012

    • 27

      杨允菲,张宝田,李建东.松嫩平原蒙古蒿种群无性系分株的生长与生物量分配规律[J].草业学报,2003,12(1): 11-17.DOI:10.3321/j.issn:1004-5759.2003.01.003

      YANG Y F, ZHANG B T, LI J D.The regulation of growth and biomass allocation on clonal ramets of Artmisia mongolica population on the Songnen plain in China[J]. Acta Prataculturae Sinica, 2003, 12(1): 11-17.DOI:10.3321/j.issn:1004-5759.2003.01.003