文章快速检索     高级检索
  浙江大学学报(理学版)  2018, Vol. 45 Issue (6): 698-701  DOI:10.3785/j.issn.1008-9497.2018.06.009
0

引用本文 [复制中英文]

王树平, 王浩森, 沈文梅. 带电细圆环和均匀介质球系统的电势分布计算[J]. 浙江大学学报(理学版), 2018, 45(6): 698-701. DOI: 10.3785/j.issn.1008-9497.2018.06.009.
[复制中文]
WANG Shuping, WANG Haosen, SHEN Wenmei. Investigating the potential distribution of a system consisting of a charged ring and a dielectric spheroid[J]. Journal of Zhejiang University(Science Edition), 2018, 45(6): 698-701. DOI: 10.3785/j.issn.1008-9497.2018.06.009.
[复制英文]

基金项目

河北建筑工程学院2018年校级教研项目(2018JY2017);河北省科技厅自筹经费项目(152176294);河北省教育厅青年基金项目(QN2018217)

作者简介

王树平(1977-), ORCID:http://orcid.org/0000-0003-4906-9904, 男, 硕士, 副教授, 主要从事大学物理的教学和研究工作, E-mail:zhangjiakouwsp@sina.com

文章历史

收稿日期:2017-11-24
带电细圆环和均匀介质球系统的电势分布计算
王树平 , 王浩森 , 沈文梅     
河北建筑工程学院 数理系, 河北 张家口 075000
摘要: 通过求解球坐标系中电势所满足的拉普拉斯方程和叠加原理,给出了带电细圆环和均匀介质球系统的电势分布解析式,根据此解析式用Matlab软件绘制等势线,并对求解结果进行了讨论,得到介质球球心、远区、系统轴线上以及带电细圆环和导体球系统的电势分布.
关键词: 拉普拉斯方程    叠加原理    带电细圆环    介质球    电势分布    
Investigating the potential distribution of a system consisting of a charged ring and a dielectric spheroid
WANG Shuping, WANG Haosen, SHEN Wenmei     
Department of Mathematics and Physics, Hebei Institute of Architecture Engineering, Zhangjiakou 075000, Hebei Province, China
Abstract: By solving Laplace's equation in spherical coordinates and using superposition principle, we get the expression about potential distribution of a system composed of a charged ring and dielectric spheroid, and plot the iso-potential line by Matlab. Based on the results, the electric potential distribution around the dielectric sphere center, the far zone, the system axis, the charged ring and the conductor ball system are obtained.
Key Words: Laplace equation    superposition principle    charged ring    dielectric spheroid    potential distribution    

在电动力学的静电学中,带电细圆环是一个很重要的物理模型,关于其电势问题,因物理图像清晰、求解方法多样,文献[1-3]等曾有讨论.基于此本文提出带电细圆环和介质球系统的电势分布的求解方法,即在球坐标系中,利用叠加原理和拉普拉斯方程,得到带电细圆环和均匀介质球系统电势分布的解析式;用Matlab软件绘制等势线;最后通过带电细圆环和均匀介质球系统的电势解析式推出了介质球球心、远区、系统轴线上以及带电细圆环和导体球系统的电势分布.

用本文的方法易求解一类具有轴对称的静电场或静磁场系统的电势或磁矢势,如带电圆环和均匀介质球壳系统的电势、圆电流和磁介质球或磁介质球壳系统的磁矢势、带电圆环和无限长介质圆柱系统的电势、圆电流和无限长磁介质圆柱系统的磁矢势.用该方法求解此类物理问题具有物理图像清晰、易被学生接受等优点,同时有利于提高学生利用特殊函数求解相关物理问题的能力.

1 带电细圆环和介质球系统的电势分布

图 1所示,真空中有一半径为a,带电量为q的细圆环,环内有一半径为R,介电常量为ε的介质球,球心和圆环中心重合于点o.由文献[1]知,在图 2所示的球坐标系中,带电细圆环在以a为半径的球面内的电介质及球面外的真空中产生的电势分别为

$ \begin{array}{l} {u_{q1}}\left( {r,\theta } \right) = \frac{q}{{4{\rm{ \mathsf{ π} }}\varepsilon a}}\sum\limits_{l = 0}^\infty {{P_{2l}}\left( 0 \right){{\left( {\frac{r}{a}} \right)}^{2l}}{P_{2l}}\left( {\cos \theta } \right)} ,\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;r < a, \end{array} $ (1)
$ \begin{array}{l} {u_{q2}}\left( {r,\theta } \right) = \frac{q}{{4{\rm{ \mathsf{ π} }}{\varepsilon _0}a}}\sum\limits_{l = 0}^\infty {{P_{2l}}\left( 0 \right){{\left( {\frac{a}{r}} \right)}^{2l + 1}}{P_{2l}}\left( {\cos \theta } \right)} ,\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;r > a. \end{array} $ (2)
图 1 带电细圆环和介质球 Fig. 1 The system consisting of a charged ring and a dielectric spheroid
图 2 带电细圆环的电势分布 Fig. 2 The potential distribution of a charged ring

图 3所示,带电细圆环和介质球系统的电势在介质球内外(除带电圆环所在的位置外)均满足拉普拉斯方程

$ {\nabla ^2}{u_1} = 0,r < R, $ (3)
$ {\nabla ^2}{u_2} = 0. $ (4)
图 3 带电细圆环与介质球系统的电势分布 Fig. 3 The potential distribution of a system consisting of a charged ring and a dielectric spheroid

介质球处于带电细圆环的电场中,故介质球内外的电势应由两部分组成:细圆环产生的电势uq(r, θ), 和介质球受到带电细圆环的电场作用而出现的极化电荷所产生的电势u′(r, θ).由电势叠加原理知,系统的电势为

$ {u_1}\left( {r,\theta } \right) = {u_{{q_1}}}\left( {r,\theta } \right) + {{u'}_1}\left( {r,\theta } \right),r < R, $ (5)
$ {u_2}\left( {r,\theta } \right) = {u_{{q_2}}}\left( {r,\theta } \right) + {{u'}_2}\left( {r,\theta } \right),r > R. $ (6)

考虑到本问题的对称性,极化电荷所产生的电势u′(r, θ)与方位角φ无关,应满足球坐标系中的拉普拉斯方程,由u1|r=0=有限值,u2|r→∞=0知,在介质球内外,极化电荷所产生的电势分别为

$ {{u'}_1}\left( {r,\theta } \right) = \sum\limits_{n = 0}^\infty {{A_n}{r^n}{P_n}\left( {\cos \theta } \right)} , $ (7)
$ {{u'}_2}\left( {r,\theta } \right) = \sum\limits_{n = 0}^\infty {\frac{{{B_n}}}{{{r^{n + 1}}}}{P_n}\left( {\cos \theta } \right)} . $ (8)

将式(1)、(2)、(7)、(8)代入式(5)和(6),得到在介质球内、介质球表面和以a为半径的球面之间、以a为半径的球面外3个区域内的电势分别为

$ \begin{array}{l} {u_1}\left( {r,\theta } \right) = \frac{q}{{4{\rm{ \mathsf{ π} }}\varepsilon a}}\sum\limits_{l = 0}^\infty {{P_{2l}}\left( 0 \right){{\left( {\frac{r}{a}} \right)}^{2l}}{P_{2l}}\left( {\cos \theta } \right)} + \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\sum\limits_{n = 0}^\infty {{A_n}{r^n}{P_n}\left( {\cos \theta } \right)} ,r < R, \end{array} $ (9)
$ \begin{array}{l} {u_2}\left( {r,\theta } \right) = \frac{q}{{4{\rm{ \mathsf{ π} }}{\varepsilon _0}a}}\sum\limits_{l = 0}^\infty {{P_{2l}}\left( 0 \right){{\left( {\frac{r}{a}} \right)}^{2l}}{P_{2l}}\left( {\cos \theta } \right)} + \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\sum\limits_{n = 0}^\infty {\frac{{{B_n}}}{{{r^{n + 1}}}}{P_n}\left( {\cos \theta } \right)} ,R < r < a, \end{array} $ (10)
$ \begin{array}{l} {u_3}\left( {r,\theta } \right) = \frac{q}{{4{\rm{ \mathsf{ π} }}{\varepsilon _0}a}}\sum\limits_{l = 0}^\infty {{P_{2l}}\left( 0 \right){{\left( {\frac{a}{r}} \right)}^{2l + 1}}{P_{2l}}\left( {\cos \theta } \right)} + \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\sum\limits_{n = 0}^\infty {\frac{{{B_n}}}{{{r^{n + 1}}}}{P_n}\left( {\cos \theta } \right)} ,r > a. \end{array} $ (11)

由本问题的已知条件可以断定,空间电势u(r, θ)应当与oxy面对称,即u(r, θ)=u(r, π-θ),又Pn[cos(π-θ)]=(-1)nPn(cos θ),则要求式(9)~(11)中的n只能取偶数.即n=2l, l=0, 1, 2, …,将式(9)~(11)中的n用2l表示,得到

$ \begin{array}{l} {u_1}\left( {r,\theta } \right) = \frac{q}{{4{\rm{ \mathsf{ π} }}\varepsilon a}}\sum\limits_{l = 0}^\infty {{P_{2l}}\left( 0 \right){{\left( {\frac{r}{a}} \right)}^{2l}}{P_{2l}}\left( {\cos \theta } \right)} + \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\sum\limits_{l = 0}^\infty {{A_{2l}}{r^{2l}}{P_{2l}}\left( {\cos \theta } \right)} , \end{array} $ (12)
$ \begin{array}{l} {u_2}\left( {r,\theta } \right) = \frac{q}{{4{\rm{ \mathsf{ π} }}{\varepsilon _0}a}}\sum\limits_{l = 0}^\infty {{P_{2l}}\left( 0 \right){{\left( {\frac{r}{a}} \right)}^{2l}}{P_{2l}}\left( {\cos \theta } \right)} + \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\sum\limits_{l = 0}^\infty {\frac{{{B_{2l}}}}{{{r^{2l + 1}}}}{P_{2l}}\left( {\cos \theta } \right)} , \end{array} $ (13)
$ \begin{array}{l} {u_3}\left( {r,\theta } \right) = \frac{q}{{4{\rm{ \mathsf{ π} }}{\varepsilon _0}a}}\sum\limits_{l = 0}^\infty {{P_{2l}}\left( 0 \right){{\left( {\frac{a}{r}} \right)}^{2l + 1}}{P_{2l}}\left( {\cos \theta } \right)} + \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\sum\limits_{l = 0}^\infty {\frac{{{B_{2l}}}}{{{r^{2l + 1}}}}{P_{2l}}\left( {\cos \theta } \right)} . \end{array} $ (14)

将介质球表面r=R处满足的边界条件u1|r=R=u2|r=R$\varepsilon \frac{{\partial {u_1}}}{{\partial r}}{|_{r = R}} = {\varepsilon _0}\frac{{\partial {u_2}}}{{\partial r}}{|_{r = R}}$代入式(12)和(13),得

$ \begin{array}{l} \frac{q}{{4{\rm{ \mathsf{ π} }}\varepsilon a}}\sum\limits_{l = 0}^\infty {{P_{2l}}\left( 0 \right){{\left( {\frac{R}{a}} \right)}^{2l}}{P_{2l}}\left( {\cos \theta } \right)} + \sum\limits_{l = 0}^\infty {{A_{2l}}{R^{2l}}{P_{2l}}\left( {\cos \theta } \right)} = \\ \frac{q}{{4{\rm{ \mathsf{ π} }}{\varepsilon _0}a}}\sum\limits_{l = 0}^\infty {{P_{2l}}\left( 0 \right){{\left( {\frac{R}{a}} \right)}^{2l}}{P_{2l}}\left( {\cos \theta } \right)} + \sum\limits_{l = 0}^\infty {\frac{{{B_{2l}}}}{{{R^{2l + 1}}}}{P_{2l}}\left( {\cos \theta } \right)} , \end{array} $ (15)
$ \varepsilon \sum\limits_{l = 0}^\infty {2l{A_{2l}}{R^{2l - 1}}{P_{2l}}\left( {\cos \theta } \right)} = - {\varepsilon _0}\sum\limits_{l = 0}^\infty {\left( {2l + 1} \right)\frac{{{B_{2l}}}}{{{R^{2l + 2}}}}{P_{2l}}\left( {\cos \theta } \right)} . $ (16)

式(15)和(16)的两边乘以P2l(cos θ)sin θ(l=0, 1, 2, …),对θ从0→π积分,再根据勒让德多项式的正交性能,可推得以下结论:

$ \begin{array}{l} \frac{q}{{4{\rm{ \mathsf{ π} }}\varepsilon a}}{P_{2l}}\left( 0 \right){\left( {\frac{R}{a}} \right)^{2l}} + {A_{2l}}{R^{2l}} = \\ \;\;\;\;\;\;\;\;\frac{q}{{4{\rm{ \mathsf{ π} }}{\varepsilon _0}a}}{P_{2l}}\left( 0 \right){\left( {\frac{R}{a}} \right)^{2l}} + \frac{{{B_{2l}}}}{{{R^{2l + 2}}}}, \end{array} $ (17)
$ 2\varepsilon {A_{2l}}l{R^{2l - 1}} = - {\varepsilon _0}\left( {2l + 1} \right)\frac{{{B_{2l}}}}{{{R^{2l + 2}}}}. $ (18)

解式(17)和(18),得

$ {A_{2l}} = - \frac{q}{{4{\rm{ \mathsf{ π} }}}}\frac{{\left( {2l + 1} \right){\varepsilon _0}\left( {{\varepsilon _0} - \varepsilon } \right)}}{{2{\varepsilon ^2}{\varepsilon _0}l + \varepsilon \varepsilon _0^2\left( {2l + 1} \right)}}\frac{{{P_{2l}}\left( 0 \right)}}{{{a^{2l + 1}}}}, $ (19)
$ {B_{2l}} = \frac{q}{{4{\rm{ \mathsf{ π} }}}}\frac{{2l\left( {{\varepsilon _0} - \varepsilon } \right)}}{{2\varepsilon {\varepsilon _0}l + \varepsilon _0^2\left( {2l + 1} \right)}}\frac{{{R^{4l + 1}}}}{{{a^{2l + 1}}}}{P_{2l}}\left( 0 \right). $ (20)

将式(19)、(20)代入式(12)~(14),得系统在3个区域内的电势分别为:

$ \begin{array}{l} {u_1}\left( {r,\theta } \right) = \frac{q}{{4{\rm{ \mathsf{ π} }}\varepsilon a}}\sum\limits_{l = 0}^\infty {{P_{2l}}\left( 0 \right){{\left( {\frac{r}{a}} \right)}^{2l}}{P_{2l}}\left( {\cos \theta } \right)} - \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\frac{q}{{4{\rm{ \mathsf{ π} }}a}}\sum\limits_{l = 0}^\infty {\frac{{\left( {2l + 1} \right){\varepsilon _0}\left( {{\varepsilon _0} - \varepsilon } \right)}}{{2{\varepsilon ^2}{\varepsilon _0}l + \varepsilon \varepsilon _0^2\left( {2l + 1} \right)}}} \times \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\frac{{{P_{2l}}\left( 0 \right)}}{{{a^{2l}}}}{r^{2l}}{P_{2l}}\left( {\cos \theta } \right),r < R, \end{array} $ (21)
$ \begin{array}{l} {u_2}\left( {r,\theta } \right) = \frac{q}{{4{\rm{ \mathsf{ π} }}{\varepsilon _0}a}}\sum\limits_{l = 0}^\infty {{P_{2l}}\left( 0 \right){{\left( {\frac{r}{a}} \right)}^{2l}}{P_{2l}}\left( {\cos \theta } \right)} + \\ \;\;\;\;\;\;\;\;\;\;\;\;\frac{q}{{4{\rm{ \mathsf{ π} }}a}}\sum\limits_{l = 0}^\infty {\frac{{2l\left( {{\varepsilon _0} - \varepsilon } \right)}}{{2\varepsilon {\varepsilon _0}l + \varepsilon _0^2\left( {2l + 1} \right)}}} \times \\ \;\;\;\;\;\;\;\;\;\;\;\;\frac{{{R^{4l + 1}}}}{{{a^{2l}}}}{P_{2l}}\left( 0 \right)\frac{1}{{{r^{2l + 1}}}}{P_{2l}}\left( {\cos \theta } \right),R < r < a, \end{array} $ (22)
$ \begin{array}{l} {u_3}\left( {r,\theta } \right) = \frac{q}{{4{\rm{ \mathsf{ π} }}{\varepsilon _0}a}}\sum\limits_{l = 0}^\infty {{P_{2l}}\left( 0 \right){{\left( {\frac{a}{r}} \right)}^{2l + 1}}{P_{2l}}\left( {\cos \theta } \right)} + \\ \;\;\;\;\;\;\;\;\;\;\;\;\frac{q}{{4{\rm{ \mathsf{ π} }}a}}\sum\limits_{l = 0}^\infty {\frac{{2l\left( {{\varepsilon _0} - \varepsilon } \right)}}{{2\varepsilon {\varepsilon _0}l + \varepsilon _0^2\left( {2l + 1} \right)}}} \times \\ \;\;\;\;\;\;\;\;\;\;\;\;\frac{{{R^{4l + 1}}}}{{{a^{2l}}}}{P_{2l}}\left( 0 \right)\frac{1}{{{r^{2l + 1}}}}{P_{2l}}\left( {\cos \theta } \right),r > a. \end{array} $ (23)

由式(21)~(23),用Matlab软件在oxz面内作带电圆环和介质球系统的等势线,如图 4所示.

图 4 带电细圆环与介质球系统在oxz面内的等势线 Fig. 4 Isopotential line of a system consisting of a charged ring and a dielectric spheroid in the oxz plane
2 讨论 2.1 介质球球心的电势

在式(21)中,取l=0的对应项,得介质球球心处的电势为

$ {u_1}\left( {r,\theta } \right) = \frac{q}{{4{\rm{ \mathsf{ π} }}{\varepsilon _0}a}}. $ (24)
2.2 远离圆环各点的电势

在式(23)中,当ra时,取l=0的对应项,求得远离圆环处的电势为

$ {u_3}\left( {r,\theta } \right) = \frac{q}{{4{\rm{ \mathsf{ π} }}{\varepsilon _0}r}}. $ (25)

式(25)表明,远离圆环处的电势与位于介质球球心处电量为q的点电荷的电势相同.

2.3 带电圆环轴线上的电势分布

圆环轴线上的点对应的角θ=0或π,将P2n(cosθ)=1代入式(21)~(23),得圆环轴线上各点的电势分别为

$ \begin{array}{l} {u_1}\left( {r,\theta } \right) = \frac{q}{{4{\rm{ \mathsf{ π} }}\varepsilon a}}\sum\limits_{l = 0}^\infty {{P_{2l}}\left( 0 \right){{\left( {\frac{r}{a}} \right)}^{2l}}} - \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\frac{q}{{4{\rm{ \mathsf{ π} }}a}}\sum\limits_{l = 0}^\infty {\frac{{\left( {2l + 1} \right){\varepsilon _0}\left( {{\varepsilon _0} - \varepsilon } \right)}}{{2{\varepsilon ^2}{\varepsilon _0}l + \varepsilon \varepsilon _0^2\left( {2l + 1} \right)}}\frac{{{P_{2l}}\left( 0 \right)}}{{{a^{2l}}}}{r^{2l}}} ,\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;r < R, \end{array} $ (26)
$ \begin{array}{l} {u_2}\left( {r,\theta } \right) = \frac{q}{{4{\rm{ \mathsf{ π} }}{\varepsilon _0}a}}\sum\limits_{l = 0}^\infty {{P_{2l}}\left( 0 \right){{\left( {\frac{r}{a}} \right)}^{2l}}} + \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\frac{q}{{4{\rm{ \mathsf{ π} }}a}}\sum\limits_{l = 0}^\infty {\frac{{2l\left( {{\varepsilon _0} - \varepsilon } \right)}}{{2\varepsilon {\varepsilon _0}l + \varepsilon _0^2\left( {2l + 1} \right)}}\frac{{{R^{4l + 1}}}}{{{a^{2l}}}}\frac{{{P_{2l}}\left( 0 \right)}}{{{r^{2l + 1}}}},} \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;R < r < a, \end{array} $ (27)
$ \begin{array}{l} {u_3}\left( {r,\theta } \right) = \frac{q}{{4{\rm{ \mathsf{ π} }}{\varepsilon _0}a}}\sum\limits_{l = 0}^\infty {{P_{2l}}\left( 0 \right){{\left( {\frac{a}{r}} \right)}^{2l + 1}}} + \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\frac{q}{{4{\rm{ \mathsf{ π} }}a}}\sum\limits_{l = 0}^\infty {\frac{{2l\left( {{\varepsilon _0} - \varepsilon } \right)}}{{2\varepsilon {\varepsilon _0}l + \varepsilon _0^2\left( {2l + 1} \right)}}} \frac{{{R^{4l + 1}}}}{{{a^{2l}}}}\frac{{{P_{2l}}\left( 0 \right)}}{{{r^{2l + 1}}}},\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;r > a. \end{array} $ (28)
2.4 带电细圆环和导体球系统的电势分布

ε/ε0→∞,介质球相当于导体球,此时,由式(21)~(23),可得带电细圆环和导体球构成的系统的电势分布为

$ \begin{array}{*{20}{c}} {{u_1}\left( {r,\theta } \right) = \frac{q}{{4{\rm{ \mathsf{ π} }}{\varepsilon _0}a}} + \frac{{{\varepsilon _0}}}{\varepsilon }\frac{q}{{4{\rm{ \mathsf{ π} }}{\varepsilon _0}a}}\sum\limits_{l = 1}^\infty {\frac{{4l + 1}}{{2l}}{{\left( {\frac{r}{a}} \right)}^{2l}}} \times }\\ {{P_{2l}}\left( 0 \right){P_{2l}}\left( {\cos \theta } \right) = \frac{q}{{4{\rm{ \mathsf{ π} }}{\varepsilon _0}a}},r < R,} \end{array} $ (29)

式(29)表明导体球内为等电势区域.

$ \begin{array}{l} {u_2}\left( {r,\theta } \right) = \frac{q}{{4{\rm{ \mathsf{ π} }}{\varepsilon _0}a}}\sum\limits_{l = 0}^\infty {{{\left( {\frac{r}{a}} \right)}^{2l}}{P_{2l}}\left( 0 \right){P_{2l}}\left( {\cos \theta } \right)} - \\ \;\;\;\;\;\;\;\frac{q}{{4{\rm{ \mathsf{ π} }}{\varepsilon _0}a}}\sum\limits_{l = 1}^\infty {\frac{{{R^{4l + 1}}}}{{{a^{2l}}}}\frac{1}{{{r^{2l + 1}}}}{P_{2l}}\left( 0 \right){P_{2l}}\left( {\cos \theta } \right)} = \\ \;\;\;\;\;\;\;\frac{1}{{4{\rm{ \mathsf{ π} }}{\varepsilon _0}r}}\frac{{qR}}{a} + \frac{q}{{4{\rm{ \mathsf{ π} }}{\varepsilon _0}a}}\sum\limits_{l = 0}^\infty {{{\left( {\frac{r}{a}} \right)}^{2l}}{P_{2l}}\left( 0 \right){P_{2l}}\left( {\cos \theta } \right)} - \\ \;\;\;\;\;\;\;\frac{1}{{4{\rm{ \mathsf{ π} }}{\varepsilon _0}r}}\frac{{qR}}{a} - \frac{q}{{4{\rm{ \mathsf{ π} }}{\varepsilon _0}a}}\sum\limits_{l = 1}^\infty {\frac{{{R^{4l + 1}}}}{{{a^{2l}}}}\frac{1}{{{r^{2l + 1}}}}{P_{2l}}\left( 0 \right){P_{2l}}\left( {\cos \theta } \right)} = \\ \;\;\;\;\;\;\;\frac{1}{{4{\rm{ \mathsf{ π} }}{\varepsilon _0}r}}\frac{{qR}}{a} + \frac{q}{{4{\rm{ \mathsf{ π} }}{\varepsilon _0}a}}\sum\limits_{l = 0}^\infty {{{\left( {\frac{r}{a}} \right)}^{2l}}{P_{2l}}\left( 0 \right){P_{2l}}\left( {\cos \theta } \right)} - \\ \;\;\;\;\;\;\;\frac{q}{{4{\rm{ \mathsf{ π} }}{\varepsilon _0}a}}\sum\limits_{l = 1}^\infty {\frac{{{R^{4l + 1}}}}{{{a^{2l}}}}\frac{1}{{{r^{2l + 1}}}}{P_{2l}}\left( 0 \right){P_{2l}}\left( {\cos \theta } \right)} ,\\ \;\;\;\;\;\;\;R < r < a. \end{array} $ (30)

由文献[4]知,式(30)中最后一项正是半径为$\frac{{{R^2}}}{a}$、电量为$ - \frac{{qR}}{a}$和原带电圆环同心的“像细圆环”产生的电势,由式(30)知, 在R < r < a区域, 带电细圆环和导体球系统的电势是由位于球心位置的电量为$\frac{{qR}}{a}$的像电荷、原带电圆环和半径为$\frac{{{R^2}}}{a}$、电量为$ - \frac{{qR}}{a}$和原圆环同心的“像细圆环”共同激发的.这与文献[4-5]利用电像法和场的叠加原理得到的结果一致.

$ \begin{array}{l} {u_3}\left( {r,\theta } \right) = \frac{q}{{4{\rm{ \mathsf{ π} }}{\varepsilon _0}a}}\sum\limits_{l = 0}^\infty {{{\left( {\frac{a}{r}} \right)}^{2l + 1}}{P_{2l}}\left( 0 \right){P_{2l}}\left( {\cos \theta } \right)} - \\ \;\;\;\;\;\frac{q}{{4{\rm{ \mathsf{ π} }}{\varepsilon _0}a}}\sum\limits_{l = 1}^\infty {\frac{{{R^{4l + 1}}}}{{{a^{2l}}}}\frac{1}{{{r^{2l + 1}}}}{P_{2l}}\left( 0 \right){P_{2l}}\left( {\cos \theta } \right)} = \\ \;\;\;\;\;\frac{1}{{4{\rm{ \mathsf{ π} }}{\varepsilon _0}r}}\frac{{qR}}{a} + \frac{q}{{4{\rm{ \mathsf{ π} }}{\varepsilon _0}a}}\sum\limits_{l = 0}^\infty {{{\left( {\frac{a}{r}} \right)}^{2l + 1}}} \times \\ \;\;\;\;\;{P_{2l}}\left( 0 \right){P_{2l}}\left( {\cos \theta } \right) - \frac{1}{{4{\rm{ \mathsf{ π} }}{\varepsilon _0}r}}\frac{{qR}}{a} - \\ \;\;\;\;\;\frac{q}{{4{\rm{ \mathsf{ π} }}{\varepsilon _0}a}}\sum\limits_{l = 1}^\infty {\frac{{{R^{4l + 1}}}}{{{a^{2l}}}}\frac{1}{{{r^{2l + 1}}}}{P_{2l}}\left( 0 \right){P_{2l}}\left( {\cos \theta } \right)} = \\ \;\;\;\;\;\frac{1}{{4{\rm{ \mathsf{ π} }}{\varepsilon _0}r}}\frac{{qR}}{a} + \frac{q}{{4{\rm{ \mathsf{ π} }}{\varepsilon _0}a}}\sum\limits_{l = 0}^\infty {{{\left( {\frac{a}{r}} \right)}^{2l + 1}}{P_{2l}}\left( 0 \right){P_{2l}}\left( {\cos \theta } \right)} - \\ \;\;\;\;\;\frac{q}{{4{\rm{ \mathsf{ π} }}{\varepsilon _0}a}}\sum\limits_{l = 1}^\infty {\frac{{{R^{4l + 1}}}}{{{a^{2l}}}}\frac{1}{{{r^{2l + 1}}}}{P_{2l}}\left( 0 \right){P_{2l}}\left( {\cos \theta } \right)} ,r > a. \end{array} $ (31)

同理,由式(31)知,在r>a区域,带电细圆环和导体球系统的电势同样是由球心位置电量为$\frac{{qR}}{a}$的像电荷、原带电圆环和半径为$\frac{{{R^2}}}{a}$、电量为$ - \frac{{qR}}{a}$并和原圆环同心的“像细圆环”共同激发的.

采用本文的思路和求解方法,还可以得到带电细圆环和电介质球壳构成的系统的电势分布,不再赘述.

参考文献
[1] 张之翔. 圆环电荷的电势的几种算法及讨论[J]. 大学物理, 2006, 25(8): 7–10.
ZHANG Z X. Different methods of calculating the electric potential of a uniformly charged ring[J]. College Physics, 2006, 25(8): 7–10. DOI:10.3969/j.issn.1000-0712.2006.08.003
[2] 于凤军. 一个关于勒让德多项式的积分公式及其简单应用——圆形带电环和电流环的静态电磁势[J]. 大学物理, 2007, 26(9): 17–19.
YU F J. On an integral formula of Legendre polynomial and its simple application[J]. College Physics, 2007, 26(9): 17–19. DOI:10.3969/j.issn.1000-0712.2007.09.006
[3] 许瑞珍, 蔡声镇. 均匀带电圆环在空间任意点电势分布的计算[J]. 福建师范大学学报(自然科学版), 2007, 23(4): 70–73.
XU R Z, CAI S Z. Calculating the electric potential distribution which arbitrarily selects in the space[J]. Journal of Fujian Normal University(Natural Science Edition), 2007, 23(4): 70–73. DOI:10.3969/j.issn.1000-5277.2007.04.017
[4] 贾秀敏. 再论带电细圆环与导体球壳系统的场分布[J]. 浙江大学学报(理学版), 2011, 38(2): 182–184.
JIA X M. Electric field distribution of a system consisting of a charged ring and conducting sphere[J]. Journal of Zhejiang University(Science Edition), 2011, 38(2): 182–184. DOI:10.3785/j.issn.1008-9497.2011.02.013
[5] 李秀燕, 陈赐海. 带电细圆环与导体球壳系统的场分布[J]. 大学物理, 2007, 26(11): 36–38.
LI X Y, CHEN C H. The space distribution of electric field generated by a uniformly charged ring[J]. College Physics, 2007, 26(11): 36–38. DOI:10.3969/j.issn.1000-0712.2007.11.010