文章快速检索     高级检索
  浙江大学学报(理学版)  2018, Vol. 45 Issue (6): 694-697, 706  DOI:10.3785/j.issn.1008-9497.2018.06.008
0

引用本文 [复制中英文]

初鲁, 鲍亮, 董贝贝. 求解非埃尔米特正定方程组的广义LHSS迭代法[J]. 浙江大学学报(理学版), 2018, 45(6): 694-697, 706. DOI: 10.3785/j.issn.1008-9497.2018.06.008.
[复制中文]
CHU Lu, BAO Liang, DONG Beibei. Generalized LHSS method for non-Hermitian positive definite linear systems[J]. Journal of Zhejiang University(Science Edition), 2018, 45(6): 694-697, 706. DOI: 10.3785/j.issn.1008-9497.2018.06.008.
[复制英文]

作者简介

初鲁(1992-), ORCID:http://orcid.org/0000-0002-5686-1243, 男, 硕士研究生, 主要从事数值计算研究

通信作者

鲍亮, ORCID:http://orcid.org/0000-0002-5747-5942, E-mail:lbao@ecust.edu.cn

文章历史

收稿日期:2018-01-04
求解非埃尔米特正定方程组的广义LHSS迭代法
初鲁 , 鲍亮 , 董贝贝     
华东理工大学 理学院, 上海 200237
摘要: 基于矩阵的埃尔米特和反埃尔米特分解,李良等给出了一类求解非埃尔米特正定方程组的LHSS迭代法,在系数矩阵的埃尔米特和非埃尔米特之间进行了非对称迭代,在较松弛的约束条件下即可获得收敛结果.本文对该方法做进一步研究,给出了一类求解非埃尔米特正定方程组的广义LHSS迭代方法.数值结果表明,系数矩阵经恰当分解,在处理某些问题时广义LHSS迭代法优于HSS迭代法.
关键词: 非埃尔米特正定方程组    LHSS迭代法    谱半径    
Generalized LHSS method for non-Hermitian positive definite linear systems
CHU Lu, BAO Liang, DONG Beibei     
School of Science, East China University of Science and Technology, Shanghai 200237, China
Abstract: Based on the Hermitian and skew-Hermitian splitting, LI et al proposed a lopsided HSS iteration method for solving non-Hermitian positive definite linear systems which conducts an asymmetric iteration between Hermitian part and skew-Hermitian part. The authors proved that LHSS method converges to the unique solution with a loose constriction of the parameter. To further study LHSS method, a generalized LHSS method is proposed here, which implements an asymmetric iteration between two positive definite parts of the non-Hermitian positive definite coefficient matrix. Theoretical analysis shows that this method converges to the unique solution of the non-Hermitian positive definite linear systems when the parameter satisfies some requirement dominated by the positive definite parts. Experiments show that compared with suitable splitting of coefficient matrix, the generalized LHSS method has better performance than HSS method when dealing with certain linear systems.
Key Words: non-Hermitian positive definite linear systems    LHSS iteration method    spectrum radius    

对于大规模正定线性方程组的求解问题,迭代法是目前的主要方法. 2001年,BAI等[1]提出了一类HSS迭代法,该方法因具有形式简单、易程序化等优点,成为当前的研究热点,得到了许多新的推广.基于HSS迭代法,BAI等[2]给出了PSS算法, CAO等[3]对PSS算法做了改进,给出了广义PSS(GPSS)算法,LI等[4]给出了修正的GPSS算法;HUANG等[5]将系数矩阵分解成正定和半正定两部分,在这两部分之间进行迭代;2007年,LI等[6]提出了一类LHSS(Lopsided HSS)迭代算法,在系数矩阵的埃尔米特和非埃尔米特之间做非对称迭代,此算法格式简单,在参数较为松弛的约束条件下即可达到收敛;后来,POUR等[7]在LHSS法基础上提出了一类新的HSS方法,围绕系数矩阵的埃尔米特部分做二步非对称迭代.

本文对LHSS迭代法做进一步研究,将方程组的系数矩阵分解成2个正定部分,然后在这2个正定部分间做非对称迭代,给出了一类广义LHSS迭代法.数值结果表明,只要恰当地将系数矩阵分解为2个正定部分,广义LHSS迭代法在处理某些问题时能取得比HSS迭代法更好的效果.

1 背景知识

在多学科领域常出现Ax=b形式的大规模线性方程组,其中ACn×n为非埃尔米特正定矩阵.为了求解该方程,BAI等[1]在矩阵的HS分解(埃尔米特和反埃尔米特分解)基础上提出了HSS迭代算法, 该算法基于以下分解:

$ \mathit{\boldsymbol{A}} = \mathit{\boldsymbol{H}} + \mathit{\boldsymbol{S}}, $ (1)

其中,$\mathit{\boldsymbol{H}} = \frac{1}{2}(\mathit{\boldsymbol{A}} + {\mathit{\boldsymbol{A}}^*})$$\mathit{\boldsymbol{S}} = \frac{1}{2}(\mathit{\boldsymbol{A}} - {\mathit{\boldsymbol{A}}^*})$.

然后给出一个初始向量x(0)Cn,通过以下2步计算x(k+1),直到迭代序列{x(k)}收敛:

$ \left\{ \begin{array}{l} \left( {\alpha \mathit{\boldsymbol{I}} + \mathit{\boldsymbol{H}}} \right){\mathit{\boldsymbol{x}}^{\left( {k + \frac{1}{2}} \right)}} = \left( {\alpha \mathit{\boldsymbol{I}} - \mathit{\boldsymbol{S}}} \right){\mathit{\boldsymbol{x}}^{\left( k \right)}} + \mathit{\boldsymbol{b}},\\ \left( {\alpha \mathit{\boldsymbol{I}} + \mathit{\boldsymbol{S}}} \right){\mathit{\boldsymbol{x}}^{\left( {k + 1} \right)}} = \left( {\alpha \mathit{\boldsymbol{I}} - \mathit{\boldsymbol{H}}} \right){\mathit{\boldsymbol{x}}^{\left( {k + \frac{1}{2}} \right)}} + \mathit{\boldsymbol{b}}, \end{array} \right. $ (2)

其中α为大于0的常数.对于HSS迭代法,BAI等[1]证明了其迭代矩阵的谱半径小于1,即HSS算法收敛.

2007年,LI等[6]提出了一类LHSS迭代法,该迭代法在系数矩阵A的埃尔米特部分H和反埃尔米特部分S之间做非对称二步迭代. LHSS迭代法的迭代过程如下:

给定初始向量x(0)Cn,通过以下2步计算x(k+1),直到序列{x(k)}满足停止条件:

$ \left\{ \begin{array}{l} \mathit{\boldsymbol{H}}{\mathit{\boldsymbol{x}}^{\left( {k + \frac{1}{2}} \right)}} = - \mathit{\boldsymbol{S}}{\mathit{\boldsymbol{x}}^{\left( k \right)}} + \mathit{\boldsymbol{b}},\\ \left( {\alpha \mathit{\boldsymbol{I}} + \mathit{\boldsymbol{S}}} \right){\mathit{\boldsymbol{x}}^{\left( {k + 1} \right)}} = \left( {\alpha \mathit{\boldsymbol{I}} - \mathit{\boldsymbol{H}}} \right){\mathit{\boldsymbol{x}}^{\left( {k + \frac{1}{2}} \right)}} + \mathit{\boldsymbol{b}}, \end{array} \right. $ (3)

其中α为大于0的常数.

2 广义LHSS迭代法

本文对LHSS迭代法做进一步研究,给出了广义LHSS(GLHSS)迭代算法以及相应迭代法的格式.

首先,任意非埃尔米特正定矩阵A有以下分裂形式[3]

$ \mathit{\boldsymbol{A}} = \mathit{\boldsymbol{G}} + \mathit{\boldsymbol{K}} + \mathit{\boldsymbol{S}}, $ (4)

其中,S表示反埃尔米特矩阵,GK表示埃尔米特正定矩阵.

其次,任意非埃尔米特正定矩阵A又可分裂为以下形式:

$ \mathit{\boldsymbol{A}} = {\mathit{\boldsymbol{P}}_1} + {\mathit{\boldsymbol{P}}_2}. $ (5)

其中,P1P2为正定矩阵.

P1P2的2种可供选择的格式如下:

$ {\mathit{\boldsymbol{P}}_1} = \mathit{\boldsymbol{D}} + 2{\mathit{\boldsymbol{L}}_\mathit{\boldsymbol{G}}},{\mathit{\boldsymbol{P}}_2} = \mathit{\boldsymbol{K}} + \mathit{\boldsymbol{L}}_\mathit{\boldsymbol{G}}^ * - {\mathit{\boldsymbol{L}}_\mathit{\boldsymbol{G}}} + \mathit{\boldsymbol{S}}; $
$ {\mathit{\boldsymbol{P}}_1} = \mathit{\boldsymbol{D}} + 2\mathit{\boldsymbol{L}}_\mathit{\boldsymbol{G}}^ * ,{\mathit{\boldsymbol{P}}_2} = \mathit{\boldsymbol{K}} + {\mathit{\boldsymbol{L}}_\mathit{\boldsymbol{G}}} - \mathit{\boldsymbol{L}}_\mathit{\boldsymbol{G}}^ * + \mathit{\boldsymbol{S}}. $

其中, D为矩阵G的对角部分,LG为矩阵G的严格下三角部分,LG*LG的共轭转置.

最后,在系数矩阵A的分裂矩阵P1P2之间做非对称的二步迭代,得到GLHSS迭代法.

算法1    GLHSS迭代算法.

给定初始向量x(0)Cn,通过以下2步计算x(k+1),直到迭代序列{x(k)}满足停止条件:

$ \left\{ \begin{array}{l} {\mathit{\boldsymbol{P}}_1}{\mathit{\boldsymbol{x}}^{\left( {k + \frac{1}{2}} \right)}} = - {\mathit{\boldsymbol{P}}_2}{\mathit{\boldsymbol{x}}^{\left( k \right)}} + \mathit{\boldsymbol{b}},\\ \left( {\alpha \mathit{\boldsymbol{I}} + {\mathit{\boldsymbol{P}}_2}} \right){\mathit{\boldsymbol{x}}^{\left( {k + 1} \right)}} = \left( {\alpha \mathit{\boldsymbol{I}} - {\mathit{\boldsymbol{P}}_1}} \right){\mathit{\boldsymbol{x}}^{\left( {k + \frac{1}{2}} \right)}} + \mathit{\boldsymbol{b}}, \end{array} \right. $ (6)

其中α为大于0的常数.

3 收敛性证明

为得到GLHSS迭代法的收敛性质,需要以下引理:

引理1[8]    设ACn×nA=Mi-Ni(i=1, 2)为矩阵A的2种分裂格式,x(0)Cn为一个给定的初始向量,由矩阵A的2种分裂格式得到的二步迭代格式为:

$ \left\{ \begin{array}{l} {\mathit{\boldsymbol{M}}_1}{\mathit{\boldsymbol{x}}^{\left( {k + \frac{1}{2}} \right)}} = {\mathit{\boldsymbol{N}}_1}{\mathit{\boldsymbol{x}}^{\left( k \right)}} + \mathit{\boldsymbol{b}},\\ {\mathit{\boldsymbol{M}}_2}{\mathit{\boldsymbol{x}}^{\left( {k + 1} \right)}} = {\mathit{\boldsymbol{N}}_2}{\mathit{\boldsymbol{x}}^{\left( {k + \frac{1}{2}} \right)}} + \mathit{\boldsymbol{b}}. \end{array} \right. $ (7)

由上述二步迭代生成的迭代序列{x(k)}为

$ {\mathit{\boldsymbol{x}}^{\left( {k + 1} \right)}} = \mathit{\boldsymbol{M}}_2^{ - 1}{\mathit{\boldsymbol{N}}_2}\mathit{\boldsymbol{M}}_1^{ - 1}{\mathit{\boldsymbol{N}}_1}{\mathit{\boldsymbol{x}}^{\left( k \right)}} + \mathit{\boldsymbol{M}}_2^{ - 1}\left( {\mathit{\boldsymbol{I}} + {\mathit{\boldsymbol{N}}_2}\mathit{\boldsymbol{M}}_1^{ - 1}} \right)\mathit{\boldsymbol{b}}. $ (8)

若该二步迭代法的迭代矩阵M2-1N2M1-1N1的谱半径ρ满足:

$ \rho \left( {\mathit{\boldsymbol{M}}_2^{ - 1}{\mathit{\boldsymbol{N}}_2}\mathit{\boldsymbol{M}}_1^{ - 1}{\mathit{\boldsymbol{N}}_1}} \right) < 1, $ (9)

则对于任意初向量x(0)Cn,矩阵序列{x(k)}收敛于线性方程Ax=b的唯一解x*Cn.

引理2    对∀α>0, 若矩阵P为复数域上的正定矩阵,则‖P(αI+P)-12 < 1,其中‖ ‖2表示矩阵的二范数.

证明    因P为正定矩阵,P*也为正定矩阵,α为一个大于0的常数,则对任意非零向量y

$ \left\langle {\left( {{\alpha ^2}\mathit{\boldsymbol{I}} + \mathit{\boldsymbol{P}} + {\mathit{\boldsymbol{P}}^ * }} \right)\mathit{\boldsymbol{y}},\mathit{\boldsymbol{y}}} \right\rangle > 0, $ (10)

其中〈, 〉表示向量内积,式(10)两端同时加上〈P*Py, y〉有

$ \left\langle {\left( {{\alpha ^2}\mathit{\boldsymbol{I}} + \mathit{\boldsymbol{P}} + {\mathit{\boldsymbol{P}}^ * } + {\mathit{\boldsymbol{P}}^ * }\mathit{\boldsymbol{P}}} \right)\mathit{\boldsymbol{y}},\mathit{\boldsymbol{y}}} \right\rangle > \left\langle {{\mathit{\boldsymbol{P}}^ * }\mathit{\boldsymbol{Py}},\mathit{\boldsymbol{y}}} \right\rangle , $ (11)

整理后即得

$ \left\langle {\left( {\alpha \mathit{\boldsymbol{I}} + \mathit{\boldsymbol{P}}} \right)\mathit{\boldsymbol{y}},\left( {\alpha \mathit{\boldsymbol{I}} + \mathit{\boldsymbol{P}}} \right)\mathit{\boldsymbol{y}}} \right\rangle > \left\langle {\mathit{\boldsymbol{Py}},\mathit{\boldsymbol{Py}}} \right\rangle . $ (12)

x=(αI+P)y,由于矩阵αI+P非奇异,所以对于任意非零向量x,都可找到一个非零向量y与之对应,经变换,式(12)可化为

$ \left\langle {\mathit{\boldsymbol{x}},\mathit{\boldsymbol{x}}} \right\rangle > \left\langle {\mathit{\boldsymbol{P}}{{\left( {\alpha \mathit{\boldsymbol{I}} + \mathit{\boldsymbol{P}}} \right)}^{ - 1}}\mathit{\boldsymbol{x}},\mathit{\boldsymbol{P}}{{\left( {\alpha \mathit{\boldsymbol{I}} + \mathit{\boldsymbol{P}}} \right)}^{ - 1}}\mathit{\boldsymbol{x}}} \right\rangle , $ (13)

于是可得

$ \frac{{{{\left\| {\mathit{\boldsymbol{P}}{{\left( {\alpha \mathit{\boldsymbol{I}} + \mathit{\boldsymbol{P}}} \right)}^{ - 1}}\mathit{\boldsymbol{x}}} \right\|}_2}}}{{{{\left\| \mathit{\boldsymbol{x}} \right\|}_2}}} < 1. $ (14)

由向量x的任意性可得

$ {\left\| {\mathit{\boldsymbol{P}}{{\left( {\alpha \mathit{\boldsymbol{I}} + \mathit{\boldsymbol{P}}} \right)}^{ - 1}}} \right\|_2} < 1. $ (15)

证毕!

引理3    若P为复数域上的正定矩阵,记H=(P+P*)为埃尔米特正定矩阵,若$0 < \alpha < \mathop {\min }\limits_{\lambda \in {\lambda _\mathit{\boldsymbol{H}}}} \lambda $,其中λH表示矩阵H的特征值集合,则

$ {\left\| {\left( {\alpha \mathit{\boldsymbol{I}} + \mathit{\boldsymbol{P}}} \right){\mathit{\boldsymbol{P}}^{ - 1}}} \right\|_2} < 1. $

证明    ∀y≠0∈Cn,若$\alpha < \mathop {\min }\limits_{\lambda \in {\lambda _\mathit{\boldsymbol{H}}}} \lambda $,则有

$ \left\langle {\alpha \mathit{\boldsymbol{y}},\mathit{\boldsymbol{y}}} \right\rangle < \left\langle {\mathit{\boldsymbol{Hy}},\mathit{\boldsymbol{y}}} \right\rangle . $

代入H=(P+P*),得到

$ \left\langle {\alpha \mathit{\boldsymbol{y}},\mathit{\boldsymbol{y}}} \right\rangle < \left\langle {\left( {\mathit{\boldsymbol{P}} + {\mathit{\boldsymbol{P}}^ * }} \right)\mathit{\boldsymbol{y}},\mathit{\boldsymbol{y}}} \right\rangle . $ (16)

式(16)两边做进一步整理,得

$ \left\langle {\left( {{\alpha ^2}\mathit{\boldsymbol{I}} - \alpha \mathit{\boldsymbol{P}} - \alpha {\mathit{\boldsymbol{P}}^ * } + {\mathit{\boldsymbol{P}}^ * }\mathit{\boldsymbol{P}}} \right)\mathit{\boldsymbol{y}},\mathit{\boldsymbol{y}}} \right\rangle < \left\langle {{\mathit{\boldsymbol{P}}^ * }\mathit{\boldsymbol{Py}},\mathit{\boldsymbol{y}}} \right\rangle . $ (17)

于是有

$ \left\langle {\left( {\alpha I - \mathit{\boldsymbol{P}}} \right)\mathit{\boldsymbol{y}},\left( {\alpha \mathit{\boldsymbol{I}} - \mathit{\boldsymbol{P}}} \right)\mathit{\boldsymbol{y}}} \right\rangle < \left\langle {\mathit{\boldsymbol{Py}},\mathit{\boldsymbol{Py}}} \right\rangle . $ (18)

x=Py,由于y为任意非零向量且矩阵P为非奇异矩阵,因此,x可选取为任意非零向量,经变换,式(18)可化为

$ \left\langle {\left( {\alpha \mathit{\boldsymbol{I}} - \mathit{\boldsymbol{P}}} \right){\mathit{\boldsymbol{P}}^{ - 1}}\mathit{\boldsymbol{x}},\left( {\alpha I - \mathit{\boldsymbol{P}}} \right){\mathit{\boldsymbol{P}}^{ - 1}}\mathit{\boldsymbol{x}}} \right\rangle < \left\langle {\mathit{\boldsymbol{x}},\mathit{\boldsymbol{x}}} \right\rangle , $ (19)

变形后得到

$ \frac{{{{\left\| {\left( {\alpha \mathit{\boldsymbol{I}} - \mathit{\boldsymbol{P}}} \right){\mathit{\boldsymbol{P}}^{ - 1}}\mathit{\boldsymbol{x}}} \right\|}_2}}}{{{{\left\| \mathit{\boldsymbol{x}} \right\|}_2}}} < 1. $ (20)

由于x的选取是任意的,因此,对于任意大于0的常数α

$ {\left\| {\left( {\alpha \mathit{\boldsymbol{I}} - \mathit{\boldsymbol{P}}} \right){\mathit{\boldsymbol{P}}^{ - 1}}} \right\|_2} < 1. $ (21)

证毕!

定理1    假设P1P2为复数域上的正定矩阵,记H=(P1+P1*)为一个由P1决定的埃尔米特正定矩阵,若$0 < \alpha < \mathop {\min }\limits_{\lambda \in {\lambda _\mathit{\boldsymbol{H}}}} \lambda $,其中λH表示矩阵H的特征值集合,则GLHSS迭代矩阵的谱半径小于1.

证明    由引理1,GLHSS迭代法对应的迭代矩阵为

$ \mathit{\boldsymbol{M}}\left( \alpha \right) = {\left( {\alpha \mathit{\boldsymbol{I}} + {\mathit{\boldsymbol{P}}_2}} \right)^{ - 1}}\left( {\alpha \mathit{\boldsymbol{I}} - {\mathit{\boldsymbol{P}}_1}} \right)\mathit{\boldsymbol{P}}_1^{ - 1}\left( { - {\mathit{\boldsymbol{P}}_2}} \right). $ (22)

式(22)相似于:

$ \mathit{\boldsymbol{M'}}\left( \alpha \right) = \left( {\alpha \mathit{\boldsymbol{I}} - {\mathit{\boldsymbol{P}}_1}} \right)\mathit{\boldsymbol{P}}_1^{ - 1}\left( { - {\mathit{\boldsymbol{P}}_2}} \right){\left( {\alpha \mathit{\boldsymbol{I}} + {\mathit{\boldsymbol{P}}_2}} \right)^{ - 1}}. $ (23)

M′(α)谱半径ρ(M′(α)),有:

$ \begin{array}{l} \rho \left( {\left( {\alpha \mathit{\boldsymbol{I}} - {\mathit{\boldsymbol{P}}_1}} \right)\mathit{\boldsymbol{P}}_1^{ - 1}} \right)\left( { - {\mathit{\boldsymbol{P}}_2}} \right){\left( {\alpha \mathit{\boldsymbol{I}} + {\mathit{\boldsymbol{P}}_2}} \right)^{ - 1}} \le \\ \;\;\;\;\;\;\;\;{\left\| {\left( {\alpha \mathit{\boldsymbol{I}} - {\mathit{\boldsymbol{P}}_1}} \right)\mathit{\boldsymbol{P}}_1^{ - 1}\left( { - {\mathit{\boldsymbol{P}}_2}} \right){{\left( {\alpha \mathit{\boldsymbol{I}} + {\mathit{\boldsymbol{P}}_2}} \right)}^{ - 2}}} \right\|_2} \le \\ \;\;\;\;\;\;\;\;{\left\| {\left( {\alpha \mathit{\boldsymbol{I}} - {\mathit{\boldsymbol{P}}_1}} \right)\mathit{\boldsymbol{P}}_1^{ - 1}} \right\|_2}{\left\| {\left( { - {\mathit{\boldsymbol{P}}_2}} \right){{\left( {\alpha \mathit{\boldsymbol{I}} + {\mathit{\boldsymbol{P}}_2}} \right)}^{ - 1}}} \right\|_2}. \end{array} $ (24)

由引理2可得‖(-P2)(αI+P2)-12<1;由引理3可得‖(αI-P1)P1-12<1.

综上, 即可得到M′(α)的谱半径ρ(M′(α))<1;再由矩阵的相似性质,即可得到ρ(M(α))<1.

证毕!

4 数值实验

数值实验中用Matlab编程求解以下大型稀疏矩阵的线性方程组:

$ \begin{array}{l} \mathit{\boldsymbol{Ax}} = \mathit{\boldsymbol{b}},\mathit{\boldsymbol{A}} = \mathit{\boldsymbol{I}} \otimes \mathit{\boldsymbol{B}} + {\mathit{\boldsymbol{B}}^{\rm{T}}} \otimes \mathit{\boldsymbol{I}}, \end{array} $

其中,$\mathit{\boldsymbol{B}} = \mathit{\boldsymbol{M}} + 2\mathit{\boldsymbol{N}} + \frac{{100}}{{{{\left( {n + 1} \right)}^2}\mathit{\boldsymbol{I}}}}$M=tridiag(-1, 2, -1)N=tridiag(0.5, 0, -0.5),tridiag表示三对角矩阵,⊗表示克罗内克积.当n=8和16时,系数矩阵的维度实际上为64×64阶和256×256阶,记达到截断误差所需的迭代时间为CPU,迭代次数为IT,实验中截断误差选为10-6,使用英特尔四核处理器(2.70 GHZ,8 GB RAM).表 1~表 2图 1~图 4为2种算法的比较.

表 1 n=8时HSS和GLHSS法的迭代次数和迭代时间比较 Table 1 Comparison of IT and CPU between HSS and GLHSS when n=8
表 2 n=16时HSS和GLHSS法的迭代次数和迭代时间比较 Table 2 Comparison of IT and CPU between HSS and GLHSS when n=16
图 1 n=8时HSS与GLHSS法谱半径比较 Fig. 1 Comparison of spectral radius between HSS and GLHSS when n=8
图 2 n=16时HSS与GLHSS法谱半径比较 Fig. 2 Comparison of spectral radius between HSS and GLHSS when n=16
图 3 n=8时HSS与GLHSS法残量下降速度比较 Fig. 3 Comparison of residual decline between HSS and GLHSS when n=8
图 4 n=16时HSS与GLHSS法残量下降速度比较 Fig. 4 Comparison of residual decline between HSS and GLHSS when n=16

图 1~图 4表 1表 2中可以看出,对于本文中的算例,GLHSS法到达截断误差所需的迭代步数及迭代时间均优于HSS,GLHSS迭代矩阵的最小谱半径优于HSS,且残量下降速度亦优于HSS.

α大到一定程度后,GLHSS迭代法的收敛性弱于HSS,这是由于α的取值受限于埃尔米特正定矩阵H=(P1+P1*)的最小特征值.

5 总结

提出了一种广义的LHSS(GLHSS)迭代法用于求解大规模正定线性方程组,数值结果表明,该方法在求解某些问题时较经典的HSS迭代法效果更好.将来的研究可以围绕如何选取更佳的正定矩阵来开展.

参考文献
[1] BAI Z Z, GOLUB C H, NG M K. Hermitian and skew-Hermitian splitting methods for non-Hermiti-an positive definite linear systems[J]. SIAM Journal on Matrix Analysis and Applications, 2003, 24(3): 603–626. DOI:10.1137/S0895479801395458
[2] BAI Z Z, GOLUB G H, LU L Z. Block-triangula-r and skew-Hermitian splitting methods for positive definite linear systems[J]. SIAM Journal on Scientific Computing, 2005, 26(3): 844–863. DOI:10.1137/S1064827503428114
[3] CAO Y, TAN W W, JIANG M Q. A generalization of the positive-definite and skew-Hermitian splitting iteration[J]. Numerical algebra, Control and Optimization, 2012, 2(4): 811–821. DOI:10.3934/naco
[4] LI W W, WANG X. A modified GPSS method for non-Hermitian positive definite linear system[J]. Applied Mathematics and Computation, 2014, 234(C): 253–259.
[5] HUANG N, MA C F. Positive definite and semi-definite splitting methods for non-Hermitian positive definite linear systems[J]. Journal of Computational Mathematics, 2016, 34(3): 300–316. DOI:10.4208/jcm
[6] LI L, HUANG T Z, LIU X P. Modified Hermitian and skew-Hermitian splitting methods for non-Hermitian positive-definite linear systems[J]. Numerical Linear Algebra and with Applications, 2007, 14(3): 217–235. DOI:10.1002/(ISSN)1099-1506
[7] POUR H N, GOUGHERY H S. New Hermitian and skew-Hermitian splitting methods for non-Hermitian positive-definite linear systems[J]. Numerical Algorithms, 2015, 69(1): 207–225. DOI:10.1007/s11075-014-9890-4
[8] 李文伟.一类线性方程组和矩阵方程的数值求解方法的研究[D].南昌: 南昌大学, 2014.
LI W W.The Study of Numerical Methods for A Kind of Linear Equations and Matrix Equations[D]. Nanchang: Nanchang University, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10403-1014055451.htm