文章快速检索     高级检索
  浙江大学学报(理学版)  2018, Vol. 45 Issue (6): 673-678  DOI:10.3785/j.issn.1008-9497.2018.06.005
0

引用本文 [复制中英文]

代丽丽. 一类具退化强制的椭圆方程在加权Sobolev空间中重整化解的存在性[J]. 浙江大学学报(理学版), 2018, 45(6): 673-678. DOI: 10.3785/j.issn.1008-9497.2018.06.005.
[复制中文]
DAI Lili. Existence of renormalized solutions for a degenerate elliptic equation with degenerate coercivity in weighted Sobolev spaces[J]. Journal of Zhejiang University(Science Edition), 2018, 45(6): 673-678. DOI: 10.3785/j.issn.1008-9497.2018.06.005.
[复制英文]

基金项目

吉林省科技厅青年科研基金项目(20160520103JH);吉林省教育厅科研项目(吉教科合字[2015]第441号)

作者简介

代丽丽(1982-), ORCID:http://orcid.org/0000-0002-6376-6949, 女, 博士, 讲师, 主要从事偏微分方程及其应用研究, E-mail:drx820115@126.com

文章历史

收稿日期:2017-09-22
一类具退化强制的椭圆方程在加权Sobolev空间中重整化解的存在性
代丽丽     
通化师范学院 数学学院, 吉林 通化 134002
摘要: 运用截断方法研究了一类椭圆方程在加权Sobolev空间中解的存在性.主要采用Marcinkiewicz估计,在得到逼近解序列的截断函数先验估计的基础上,通过选取适当的检验函数,对逼近解序列做合适的估计,以此证明重整化解的存在性.
关键词: 退化椭圆方程    截断函数    加权Sobolev空间    权函数    
Existence of renormalized solutions for a degenerate elliptic equation with degenerate coercivity in weighted Sobolev spaces
DAI Lili     
Institute of Mathematics, Tonghua Normal University, Tonghua 134002, Jilin Province, China
Abstract: In this paper, we consider the following nonlinear elliptic equation with degenerate coercivity and lower order term in the setting of the weighted Sobolev space. We investigate the existence of the renormalized solutions in W01, p(Ω, ω) by the truncation method. With the help of Marcinkiewicz estimate, through some priori estimates for the sequence of solutions of the approximate problem, we prove that un converges in measure. Then we choose suitable test functions for the approximate equation and obtain the needed estimates. Finally, through a limit process, we obtain the existence of renormalized solutions to problem.
Key Words: degenerate elliptic equation    truncation function    weighted Sobolev space    weighted functions    
0 引言

近几十年来, 数学工作者十分关注偏微分方程尤其是非线性椭圆方程解的存在性、唯一性、正则性等问题.本文在加权Sobolev空间框架下,研究一类带有退化强制项的非线性椭圆方程

$ \left\{ \begin{array}{l} - {\rm{div}}\left( {\frac{{\mathit{\boldsymbol{a}}\left( {x,\nabla u} \right)}}{{{{\left( {1 + \left| u \right|} \right)}^\gamma }}}} \right) + g\left( {x,u} \right) = f,x \in \Omega ,\\ u = 0,\;\;\;\;\;x \in \partial \Omega , \end{array} \right. $ (1)

其中Ω是RN(N≥2)中的有界区域,γ > 0, fL1(Ω),W01, p(Ω, ω)为加权的Sobolev空间,ω ={ωi(x)}0≤iN为权函数,p为满足1 < p < ∞的实数.此外,假设:

H1   a (x, ξ)={ai(x, ξ)}1≤iN:Ω×RNRN是一个Carathéodory向量值函数,对任意的x∈Ω,每一个ξRN有以下不等式成立:

$ \left| {{a_i}\left( {x,\xi } \right)} \right| \le \beta \omega _i^{\frac{1}{p}}\left( x \right)\left[ {k\left( x \right) + \sum\limits_{j = 1}^N {\omega _i^{\frac{1}{{p'}}}\left( x \right){{\left| {{\xi _j}} \right|}^{p - 1}}} } \right], $ (2)
$ \mathit{\boldsymbol{a}}\left( {x,\xi } \right) \cdot \xi \ge \alpha \sum\limits_{i = 1}^N {{\omega _i}\left( x \right){{\left| {{\xi _i}} \right|}^p}} , $ (3)
$ \left[ {\mathit{\boldsymbol{a}}\left( {x,\xi } \right) - \mathit{\boldsymbol{a}}\left( {x,\eta } \right)} \right] \cdot \left( {\xi - \eta } \right) > 0,\xi \ne \eta \in {R^N}, $ (4)

其中,k(x)是Lp′(Ω)中一个正函数, $ \frac{1}{p} + \frac{1}{{p'}} = 1 $, α, β为正数.

H2  g(x, s)是一个Carathéodory函数,对几乎所有的x∈Ω,每一个ξRN,且对任意的kR+,有

$ g\left( {x,s} \right) \cdot s \ge 0, $ (5)
$ \sup \left| {g\left( {x,s} \right)} \right| = {h_k}\left( x \right) \in {L^1}\left( \Omega \right). $ (6)

H3  ω ={ωi(x)}0≤iN是一个在Ω上几乎处处严格正的可测权函数向量, 满足

$ {\omega _i} \in L_{{\rm{loc}}}^1\left( \Omega \right),\;\;\;\;\omega _i^{ - \frac{1}{{p - 1}}} \in L_{{\rm{loc}}}^1\left( \Omega \right). $

下文将从两方面来陈述所研究问题的特点.首先,与其他文献最主要的区别是,本研究的椭圆问题(1)在加权的Sobolev空间,权函数的引入,使得嵌入关系发生了很大的变化,这给问题的解决带来了一定的困难.另外,很多文献关注了与式(1)类似的问题[1-7],文献[1]考虑了在空间不加权的框架下,当p=2,0≤γ < 1,fLm(Ω)且g(x, u)=0时f可积性的变化对u正则性的影响. BOCCARDO等[8]同样在空间不加权的情形下,研究了当g(x, u)=u, fLm(Ω)时问题(1)解的存在性与非存在性. CROCE等[6]证明了在空间不加权的情形下,当g(x, u)=|u|q-1u时,存在解uLq(Ω),并讨论了指标q对解u正则性的影响.

其次, 问题(1)的假设条件(2)意味着当u很大时,$ \frac{1}{{{{\left( {1 + |u|} \right)}^\gamma }}} \to 0 $,使得由$ - {\rm{div}}\left( {\frac{{\mathit{\boldsymbol{a}}\left( {x, \nabla u} \right)}}{{{{\left( {1 + |u|} \right)}^\gamma }}}} \right) $所定义的算子项非强制.因逼近问题中定义的gn(x, un)在L1(Ω)中的强收敛性是非常重要的,但强制性的缺失导致gn(x, ununL1(Ω)中非一致有界,因而无法得到un的先验估计.另外,考虑了一个仅满足部分增长性条件(6)的低阶项g(x, u),同时右端项f仅在L1(Ω)中.以上困难导致无法直接利用对偶理论和单调算子理论证明解的存在性,必须寻找其他解决方法.因此,本文采用了Marcinkiewicz估计,这不仅有助于克服退化强制所带来的影响,还处理了低阶项.通过选取适当的检验函数得到逼近解序列的截断函数Tk(un)强收敛,以此证明了问题(1)重整化解的存在性.

1 准备知识

首先,介绍常指数情形下加权Sobolev空间的相关知识[9].

(1) Lp(Ω, γ)空间

$ {L^p}\left( {\Omega ,\mathit{\boldsymbol{\gamma }}} \right) = \left\{ {u = u\left( x \right):u{\mathit{\boldsymbol{\gamma }}^{\frac{1}{p}}} \in {L^p}\left( \Omega \right)} \right\}, $

其中γ为权函数, 赋予以下Luxemburg范数:

$ {\left\| u \right\|_{p,\mathit{\boldsymbol{\gamma }}}} = {\left( {\int_\Omega {{{\left| {u\left( x \right)} \right|}^p}\mathit{\boldsymbol{\gamma }}\left( x \right){\rm{d}}x} } \right)^{\frac{1}{p}}}. $

(2) W01, p(Ω, ω)空间

X=:W01, p(Ω, ω)空间为所有实值函数uLp(Ω, ω0)所构成的空间,对所有的i=1, 2, …, N,其弱导数满足

$ \frac{{\partial u}}{{\partial {x_i}}} \in {L^p}\left( {\Omega ,{\omega _i}} \right). $

赋予范数

$ \begin{array}{l} {\left\| u \right\|_{1,p,\mathit{\boldsymbol{\omega }}}} = \left( {\int_\Omega {{{\left| {u\left( x \right)} \right|}^p}{\omega _0}\left( x \right){\rm{d}}x} + } \right.\\ \;\;\;\;\;\;\;\;\;\;\;\;\;{\left. {\sum\limits_{i = 1}^N {\int_\Omega {{{\left| {\frac{{\partial u\left( x \right)}}{{\partial {x_i}}}} \right|}^p}{\omega _i}\left( x \right){\rm{d}}x} } } \right)^{\frac{1}{p}}}. \end{array} $

定义在X上的范数为

$ {\left\| u \right\|_X}: = {\left( {\sum\limits_{i = 1}^N {\int_\Omega {{{\left| {\frac{{\partial u\left( x \right)}}{{\partial {x_i}}}} \right|}^p}{\omega _i}\left( x \right){\rm{d}}x} } } \right)^{\frac{1}{p}}}, $

等价于‖·‖1, p, ω.(X, ‖·‖1, p, ω)是一个自反的Banach空间, 其对偶空间为W0-1, p(Ω, ω*), 其中$ {\mathit{\boldsymbol{\omega }}^*} = \{ \omega _i^* = \omega _i^{\frac{{ - p'}}{p}}\} $, 对所有的i=1, 2, …, N, $ p' = \frac{p}{{p - 1}} $成立.

(3) 加权的Hardy型不等式

一般情形下,存在权函数ω (x)和实数q(1 < q < ∞),满足σ1-qL1(Ω), $ q' = \frac{q}{{q - 1}} $, 对每一个uX以及与u无关的正常数C, 都有以下形式的Hardy不等式成立:

$ {\left( {\int_\Omega {{{\left| {u\left( x \right)} \right|}^q}\sigma {\rm{d}}x} } \right)^{\frac{1}{q}}} \le C{\left( {\sum\limits_{i = 1}^N {\int_\Omega {{{\left| {\frac{{\partial u\left( x \right)}}{{\partial {x_i}}}} \right|}^p}{\omega _i}\left( x \right){\rm{d}}x} } } \right)^{\frac{1}{p}}}. $

进而,X紧嵌入Lq(Ω, σ)中.有关加权的Hardy不等式例子可参见文献[10-11].

其次, 介绍截断函数的相关知识.一般情形下, 对于在R中的s, k, 其中k≥0, 高度为k的Truncation函数[12-13]定义为

$ {T_k}\left( s \right) = \max \left( { - k,\min \left( {k,s} \right)} \right) = \left\{ \begin{array}{l} s,\left| s \right| < k,\\ k,s \ge k,\\ - k,s \le - k. \end{array} \right. $

鉴于其重要性,给出其简图,见图 1.

图 1 Tk(s) Fig. 1 Tk(s)

Marcinkiewicz空间的定义由BÉNLIAN等[14]提出.

定义1  若一个可测函数f:Ω→R相应的分布函数ϕf(k)≤meas{x∈Ω:|f(x)| > k}, k > 0, 满足

$ {\phi _f}\left( k \right) \le C{k^{ - q}},C\;为常数, $

则称f属于Marcinkiewicz空间Μq(Ω).

下面给出问题(1)重整化解的定义, 此定义在带有扩散项的微分方程理论中是非常经典的.

定义2  若满足

(1) Tk(u)∈W01, p(Ω, ω), k > 0;

(2) g(x, u)∈L1(Ω),同时

$ \mathop {\lim }\limits_{j \to \infty } \int_{\Omega \cap \left\{ {j \le \left| u \right| \le j + 1} \right\}} {\frac{{\mathit{\boldsymbol{a}}\left( {x,\nabla u} \right)}}{{{{\left( {1 + \left| u \right|} \right)}^\gamma }}}\nabla u{\rm{d}}x} = 0; $ (7)

(3) 对每一个具有紧支集的函数SW1, ∞(R),对任何ζW01, p(Ω, ω)∩L(Ω)均有

$ \begin{array}{l} \int_\Omega {\frac{{\mathit{\boldsymbol{a}}\left( {x,\nabla u} \right)}}{{{{\left( {1 + \left| u \right|} \right)}^\gamma }}} \cdot \nabla \left( {S\left( u \right)\zeta } \right){\rm{d}}x} + \\ \;\;\;\;\int_\Omega {g\left( {x,u} \right)S\left( u \right)\zeta {\rm{d}}x} = \int_\Omega {fS\left( u \right)\zeta {\rm{d}}x} , \end{array} $ (8)

则称可测函数uW01, p(Ω, ω)是问题(1)的重整化解.

2 重整化解的存在性

定理1  假设H1~H3成立,fL1(Ω),则问题(1)至少存在1个重整化解u.

证明  分5步完成.

第1步  逼近问题及先验估计.

先建立问题(1)的逼近问题.对nN, 设un满足

$ \left\{ \begin{array}{l} - {\rm{div}}\left( {\frac{{\mathit{\boldsymbol{a}}\left( {x,\nabla {u_n}} \right)}}{{{{\left( {1 + \left| {{T_n}\left( {{u_n}} \right)} \right|} \right)}^\gamma }}}} \right) + {g_n}\left( {x,{u_n}} \right) = {f_n},\;\;\;x \in \Omega ,\\ {u_n} = 0,\;\;\;\;\;\;x \in \partial \Omega , \end{array} \right. $ (9)

其中fnL(Ω)中的函数序列且在L1(Ω)中强收敛于f并且‖fnL1(Ω)≤‖fL1(Ω)gn(x, s)=Tng(x, s), 且满足式(5)和(6).由文献[15]的pseudo-monotone算子理论可知, 逼近问题(9)至少存在1个弱解且对任意vW01, p(Ω, ω)∩L(Ω), 有

$ \int_\Omega {\frac{{\mathit{\boldsymbol{a}}\left( {x,\nabla {u_n}} \right)}}{{{{\left( {1 + \left| {{T_n}\left( {{u_n}} \right)} \right|} \right)}^\gamma }}}} \cdot \nabla v{\rm{d}}x + \int_\Omega {{g_n}\left( {x,{u_n}} \right)v{\rm{d}}x} = \int_\Omega {{f_n}v{\rm{d}}x} . $ (10)

接下来, 对解序列un做一些先验估计, 选取式(9)中Tk(un)(k > 0)作为检验函数, 则有

$ \begin{array}{l} \int_\Omega {\frac{{\mathit{\boldsymbol{a}}\left( {x,\nabla {u_n}} \right)}}{{{{\left( {1 + \left| {{T_n}\left( {{u_n}} \right)} \right|} \right.}^\gamma }}}} \cdot \nabla {T_k}\left( {{u_n}} \right){\rm{d}}x + \\ \;\;\;\;\;\int_\Omega {{g_n}\left( {x,{u_n}} \right){T_k}\left( {{u_n}} \right){\rm{d}}x} = \int_\Omega {{f_n}{T_k}\left( {{u_n}} \right){\rm{d}}x} . \end{array} $ (11)

由于Tk(s)与s同号,结合式(5),式(11)左端第2项为非负项,去掉非负项可得

$ \int_\Omega {\frac{{\mathit{\boldsymbol{a}}\left( {x,\nabla {u_n}} \right)}}{{{{\left( {1 + \left| {{T_n}\left( {{u_n}} \right)} \right|} \right.}^\gamma }}}} \cdot \nabla {T_k}\left( {{u_n}} \right){\rm{d}}x \le k\int_\Omega {\left| {{f_n}} \right|{\rm{d}}x} . $

考虑式(3),并选取n > k,有

$ \frac{\alpha }{{{{\left( {1 + k} \right)}^\gamma }}}\sum\limits_{i = 1}^N {\int_\Omega {{\omega _i}\left( x \right){{\left| {\frac{{\partial {T_k}\left( {{u_n}} \right)}}{{\partial {x_i}}}} \right|}^p}{\rm{d}}x} } \le k\int_\Omega {\left| {{f_n}} \right|{\rm{d}}x} . $ (12)

因此,对所有的k > 0,有

$ \sum\limits_{i = 1}^N {\int_\Omega {{\omega _i}\left( x \right){{\left| {\frac{{\partial {T_k}\left( {{u_n}} \right)}}{{\partial {x_i}}}} \right|}^p}{\rm{d}}x} } \le \frac{{k{{\left( {1 + k} \right)}^\gamma }{{\left\| f \right\|}_{{L^1}\left( \Omega \right)}}}}{{{c_0}}}. $ (13)

如果k≥1, 有

$ \sum\limits_{i = 1}^N {\int_\Omega {{\omega _i}\left( x \right){{\left| {\frac{{\partial {T_k}\left( {{u_n}} \right)}}{{\partial {x_i}}}} \right|}^p}{\rm{d}}x} } \le \frac{{{2^\gamma }{k^{\gamma + 1}}{{\left\| f \right\|}_{{L^1}\left( \Omega \right)}}}}{{{c_0}}}. $ (14)

由加权Hardy不等式,同时结合式(14)以及σ1-qL1(Ω),当k≥1,p > γ+1时,有

$ \begin{array}{l} \left| {\left\{ {\left| {{u_n}} \right| > k} \right\}} \right| = \int_{\left\{ {\left| {{u_n}} \right| > k} \right\}} {\frac{{\left| {{T_k}\left( {{u_n}} \right)} \right|{\sigma ^{\frac{1}{q}}}}}{{k{\sigma ^{\frac{1}{q}}}}}{\rm{d}}x} \le \\ \;\;\;\;\frac{1}{k}{\left( {\int_\Omega {{{\left| {{T_k}\left( {{u_n}} \right)} \right|}^q}\sigma {\rm{d}}x} } \right)^{\frac{1}{q}}}{\left( {\int_\Omega {{\sigma ^{ - \frac{{q'}}{q}}}{\rm{d}}x} } \right)^{\frac{1}{q}}} \le \\ \;\;\;\;\frac{1}{k}{\left( {\sum\limits_{i = 1}^N {\int_\Omega {{\omega _i}\left( x \right)\left| {\frac{{\partial {T_k}\left( {{u_n}} \right)}}{{\partial {x_i}}}} \right|{\rm{d}}x} } } \right)^{\frac{1}{p}}}{\left( {\int_\Omega {{\sigma ^{ - \frac{{q'}}{q}}}{\rm{d}}x} } \right)^{\frac{1}{{q'}}}} \le \\ \;\;\;\;C{k^{\frac{{\gamma + 1 - p}}{p}}}{\left\| {{\sigma ^{1 - q'}}} \right\|_{{L^1}\left( \Omega \right)}}, \end{array} $

其中C为常数,当0 < k < 1时,显然

$ {\rm{meas}}\left\{ {\left| {{u_n}} \right| > k} \right\} \le \left| \Omega \right|, $

得到$ {u_n} \in {M^{\frac{{p - \gamma - 1}}{p}}}\left( \Omega \right) $.因此,有

$ \mathop {\lim }\limits_{k \to + \infty } {\rm{meas}}\left\{ {\left| {{u_n}} \right| > k} \right\} = 0,关于\;n\;一致. $ (15)

第2步  un在Ω上几乎处处收敛.

先证un依测度收敛.注意到对任意的k, ε > 0, 有

$ \begin{array}{l} \left\{ {\left| {{u_n} - {u_m}} \right| > t} \right\} \subset \left\{ {\left| {{u_n}} \right| > k} \right\} \cup \left\{ {\left| {{u_m}} \right| > k} \right\} \cup \\ \;\;\;\;\;\left\{ {{T_k}\left( {{u_n}} \right) - {T_k}\left( {{u_m}} \right)\left| { > t} \right.} \right\}, \end{array} $

$ \begin{array}{l} {\rm{meas}}\left\{ {\left| {{u_n} - {u_m}} \right| > t} \right\} \le {\rm{meas}}\left\{ {\left| {{u_n}} \right| > k} \right\} + \\ \;\;\;\;\;\;{\rm{meas}}\left\{ {\left| {{u_m}} \right| > k} \right\} + {\rm{meas}}\left\{ {{T_k}\left( {{u_n}} \right) - {T_k}\left( {{u_m}} \right)\left| { > t} \right.} \right\}. \end{array} $ (16)

由式(13)可知,Tk(un)在W01, p(Ω, ω)中有界,那么存在νkW01, p(Ω, ω),使得对任意的k > 0, 有Tk(un)→νkW01, p(Ω, ω)中弱收敛,Tk(un)→νkLq(Ω, σ)中强收敛,且在Ω上几乎处处收敛.

由此可知,Tk(un)是在Ω中依测度收敛的柯西列.那么,对任意的ε > 0,存在k(ε) > 0,当mn充分大时,并结合式(16)可得,un是一个依测度收敛的Cauchy序列,因此,un依测度收敛[16].根据Riesz定理,un存在一个子列(仍记其本身)以及一个可测函数u,使得

$ {u_n} \to u\;在\;\Omega \;上几乎处处收敛. $ (17)

联合式(13)和(17),对任意的k > 0,有

$ {T_k}\left( {{u_n}} \right) \to {T_k}\left( u \right)\; 于\;W_0^{1,p}\left( {\Omega ,\mathit{\boldsymbol{\omega }}} \right)\;中弱收敛, $ (18)
$ {T_k}\left( {{u_n}} \right) \to {T_k}\left( u \right)在\;\Omega \;上几乎处处收敛. $ (19)

因此,对任意的k > 0, 有Tk(u)∈W01, p(Ω, ω).

第3步  gn(x, un)在L1(Ω)中强收敛.

证明

$ {g_n}\left( {x,{u_n}} \right) \to g\left( {x,u} \right)\;于\;{L^1}\left( \Omega \right)\;中强收敛. $ (20)

直观起见,给出θl1(s)的简图如图 2所示.在式(9)中选取θl1(un)=Tl+1(un)-Tl(un) (l > 0)作为检验函数,则有

$ \begin{array}{l} \int_\Omega {\frac{{\mathit{\boldsymbol{a}}\left( {x,\nabla {u_n}} \right)}}{{{{\left( {1 + \left| {{T_n}\left( {{u_n}} \right)} \right|} \right)}^\gamma }}}} \cdot \nabla \left( {{T_{l + 1}}\left( {{u_n}} \right) - {T_{l + 1}}\left( {{u_n}} \right)} \right){\rm{d}}x + \\ \;\;\;\;\;\;\int_\Omega {{g_n}\left( {x,{u_n}} \right)\left( {{T_{l + 1}}\left( {{u_n}} \right) - {T_{l + 1}}\left( {{u_n}} \right)} \right){\rm{d}}x} = \\ \;\;\;\;\;\;\int_\Omega {{f_n}\left( {{T_{l + 1}}\left( {{u_n}} \right) - {T_l}\left( {{u_n}} \right)} \right){\rm{d}}x} . \end{array} $
图 2 θl1(s) Fig. 2 θl1(s)

整理后可得

$ \begin{array}{l} \int_{\left\{ {l \le \left| {{u_n}} \right| \le l + 1} \right\}} {\frac{{\mathit{\boldsymbol{a}}\left( {x,\nabla {u_n}} \right)}}{{{{\left( {1 + \left| {{T_n}\left( {{u_n}} \right)} \right|} \right)}^\gamma }}}\nabla {u_n}{\rm{d}}x} + \\ \;\;\;\;\;\int_{\left\{ {\left| {{u_n}} \right| \ge l} \right\}} {\left| {{g_n}\left( {x,{u_n}} \right)} \right|{\rm{d}}x} \le \int_{\left\{ {\left| {{u_n}} \right| \ge l} \right\}} {\left| {{f_n}} \right|{\rm{d}}x} . \end{array} $

由式(3)可知,上式左端第1项为非负项,去掉非负项,有

$ \int_{\left\{ {\left| {{u_n}} \right| \ge l} \right\}} {\left| {{g_n}\left( {x,{u_n}} \right)} \right|{\rm{d}}x} \le \int_{\left\{ {\left| {{u_n}} \right| \ge l} \right\}} {\left| {{f_n}} \right|{\rm{d}}x} . $

注意到式(15)以及fnL1(Ω)中强紧,有

$ \mathop {\lim }\limits_{k \to + \infty } \mathop {\sup }\limits_{n \in N} \int_{\left\{ {\left| {{u_n}} \right| \ge k} \right\}} {\left| {{f_n}} \right|{\rm{d}}x = 0} . $

ε > 0,存在l(ε)≥1,使得

$ \int_{\left\{ {\left| {{u_n}} \right| \ge l\left( \varepsilon \right)} \right\}} {\left| {{g_n}\left( {x,{u_n}} \right)} \right|{\rm{d}}x} \le \frac{\varepsilon }{2}. $ (21)

对于Ω中的任何可测子集E,有

$ \begin{array}{l} \int_E {\left| {{g_n}\left( {x,{u_n}} \right)} \right|{\rm{d}}x} \le \int_{E \cap \left\{ {\left| {{u_n}} \right| \ge l\left( \varepsilon \right)} \right\}} {\left| {{g_n}\left( {x,{u_n}} \right)} \right|{\rm{d}}x} + \\ \;\;\;\;\int_{E \cap \left\{ {\left| {{u_n}} \right| > l\left( \varepsilon \right)} \right\}} {\left| {{g_n}\left( {x,{u_n}} \right)} \right|{\rm{d}}x} \le \int_E {\left| {{h_{l\left( \varepsilon \right)}}\left( x \right)} \right|{\rm{d}}x} + \\ \;\;\;\;\int_{E \cap \left\{ {\left| {{u_n}} \right| > l\left( \varepsilon \right)} \right\}} {\left| {{g_n}\left( {x,{u_n}} \right)} \right|{\rm{d}}x} . \end{array} $

注意到式(6),存在η(ε) > 0,满足meas(E) < η(ε),使得

$ \int_E {\left| {{h_{l\left( \varepsilon \right)}}\left( x \right)} \right|{\rm{d}}x} \le \frac{\varepsilon }{2}. $ (22)

综上,结合式(21)和(22),易得对所有的E,若满足meas(E) < η(ε),则有∫E|gn(x, un)|dxε.同时由式(17)可知,gn(x, un)→g(x, u)在Ω上几乎处处收敛.根据Vitali定理,有

gn(x, un)→g(x, u)于L1(Ω)中强收敛.

第4步  Tk(un)在W01, p(Ω, ω)中强收敛于Tk(u).

下面证明对每一个k > 0, Tk(un)在W01, p(Ω, ω)中强收敛于Tk(u).设h > k,选取T2k(un-Th(un)+ Tk(un)-Tk(u))作为式(9)的1个检验函数,有

$ \begin{array}{l} \int_\Omega {\frac{{\mathit{\boldsymbol{a}}\left( {x,\nabla {u_n}} \right)}}{{{{\left( {1 + \left| {{T_n}\left( {{u_n}} \right)} \right|} \right)}^\gamma }}}} \cdot \nabla {T_{2k}}\left( {{u_n} - {T_h}\left( {{u_n}} \right) + {T_k}\left( {{u_n}} \right) - } \right.\\ \;\;\;\;\;\;\left. {{T_k}\left( u \right)} \right){\rm{d}}x + \int_\Omega {{g_n}\left( {x,{u_n}} \right){T_{2k}}\left( {{u_n} - {T_h}\left( {{u_n}} \right) + } \right.} \\ \;\;\;\;\;\;\left. {{T_k}\left( {{u_n}} \right) - {T_k}\left( u \right)} \right){\rm{d}}x = \int_\Omega {{f_n}{T_{2k}}\left( {{u_n} - {T_h}\left( {{u_n}} \right) + } \right.} \\ \;\;\;\;\;\;\left. {{T_k}\left( {{u_n}} \right) - {T_k}\left( u \right)} \right){\rm{d}}x. \end{array} $ (23)

方便起见,将式(23)记为

$ {I_1} + {I_2} = {I_3}, $

同时定义εn, h

$ \mathop {\lim }\limits_{h \to + \infty } \mathop {\lim }\limits_{n \to + \infty } {\varepsilon _{n,h}} = 0, $

类似地,εn表示$ \mathop {\lim }\limits_{n \to \infty } $ εn=0.

关于I2I3,结合式(17)和(20),以及fnL1(Ω)中强紧,有

$ \begin{array}{l} \int_\Omega {{g_n}\left( {x,{u_n}} \right){T_{2k}}\left( {{u_n} - {T_h}\left( {{u_n}} \right) + {T_k}\left( {{u_n}} \right) - } \right.} \\ \;\;\;\;\;\;\;\left. {{T_k}\left( u \right)} \right){\rm{d}}x = {\varepsilon _{n,h}}, \end{array} $ (24)
$ \int_\Omega {{f_n}{T_{2k}}\left( {{u_n} - {T_h}\left( {{u_n}} \right) + {T_k}\left( {{u_n}} \right) - {T_k}\left( u \right)} \right){\rm{d}}x} = {\varepsilon _{n,h}}. $ (25)

关于I1,令M=4k+h,易知当|un| > M时,

$ \nabla {T_{2k}}\left( {{u_n} - {T_h}\left( {{u_n}} \right) + {T_k}\left( {{u_n}} \right) - {T_k}\left( u \right)} \right) = 0, $

I1可化为

$ \begin{array}{l} {I_1} = \int_{\left\{ {\left| {{u_n}} \right| < k} \right\}} {\frac{{\mathit{\boldsymbol{a}}\left( {x,\nabla {T_M}\left( {{u_n}} \right)} \right)}}{{{{\left( {1 + \left| {{T_n}\left( {{u_n}} \right)} \right|} \right)}^\gamma }}} \cdot \nabla {T_{2k}}\left( {{u_n} - {T_h}\left( {{u_n}} \right) + } \right.} \\ \;\;\;\;\;\;\left. {{T_k}\left( {{u_n}} \right) - {T_k}\left( u \right)} \right){\rm{d}}x + \int_{\left\{ {\left| {{u_n}} \right| < k} \right\}} {\frac{{\mathit{\boldsymbol{a}}\left( {x,\nabla {T_M}\left( {{u_n}} \right)} \right)}}{{{{\left( {1 + \left| {{T_n}\left( {{u_n}} \right)} \right|} \right)}^\gamma }}} \cdot } \\ \;\;\;\;\;\;\nabla {T_{2k}}\left( {{u_n} - {T_h}\left( {{u_n}} \right) + {T_k}\left( {{u_n}} \right) - {T_k}\left( u \right)} \right){\rm{d}}x. \end{array} $

考虑到在集合{|un| < k}上,un-Th(un)=0,集合{|un|≥k}上,∇Tk(un)=0,并注意到a(x, ξξ≥0,有

$ \begin{array}{l} {I_1} \ge \int_\Omega {\frac{{\mathit{\boldsymbol{a}}\left( {x,\nabla {T_k}\left( {{u_n}} \right)} \right)\nabla \left( {{T_k}\left( {{u_n}} \right) - {T_k}\left( u \right)} \right)}}{{{{\left( {1 + \left| {{T_n}\left( {{u_n}} \right)} \right|} \right)}^\gamma }}}{\rm{d}}x} + \\ \;\;\;\;\;\;\int_{\left\{ {\left| {{u_n}} \right| \ge k} \right\}} {\frac{{\mathit{\boldsymbol{a}}\left( {x,\nabla {T_M}\left( {{u_n}} \right)} \right)}}{{{{\left( {1 + \left| {{T_n}\left( {{u_n}} \right)} \right|} \right)}^\gamma }}}\nabla \left( {{u_n} - {T_h}\left( {{u_n}} \right)} \right){\rm{d}}x} - \\ \;\;\;\;\;\;\int_{\left\{ {\left| {{u_n}} \right| \ge k} \right\}} {\frac{{\mathit{\boldsymbol{a}}\left( {x,\nabla {T_M}\left( {{u_n}} \right)} \right)}}{{{{\left( {1 + \left| {{T_n}\left( {{u_n}} \right)} \right|} \right)}^\gamma }}}\nabla {T_h}\left( u \right){\rm{d}}x} . \end{array} $

去掉上式右端第2个非负项,有

$ \begin{array}{l} {I_1} \ge \int_\Omega {\frac{{\mathit{\boldsymbol{a}}\left( {x,\nabla {T_k}\left( {{u_n}} \right)} \right)\nabla \left( {{T_k}\left( {{u_n}} \right) - {T_k}\left( u \right)} \right)}}{{{{\left( {1 + \left| {{T_n}\left( {{u_n}} \right)} \right|} \right)}^\gamma }}}{\rm{d}}x} - \\ \;\;\;\;\;\;\int_{\left\{ {\left| {{u_n}} \right| \ge k} \right\}} {\frac{{\mathit{\boldsymbol{a}}\left( {x,\nabla {T_M}\left( {{u_n}} \right)} \right)}}{{{{\left( {1 + \left| {{T_n}\left( {{u_n}} \right)} \right|} \right)}^\gamma }}}\nabla {T_k}\left( u \right){\rm{d}}x} . \end{array} $

并对右端第1项进行整理,可得

$ \begin{array}{l} {I_1} \ge \\ \int_\Omega {\frac{{\left[ {\mathit{\boldsymbol{a}}\left( {x,\nabla {T_k}\left( {{u_n}} \right)} \right) - \mathit{\boldsymbol{a}}\left( {x,\nabla {T_k}\left( u \right)} \right)} \right]\nabla \left( {{T_k}\left( {{u_n}} \right) - {T_k}\left( u \right)} \right)}}{{{{\left( {1 + \left| {{T_n}\left( {{u_n}} \right)} \right|} \right)}^\gamma }}}{\rm{d}}x} + \\ \int_\Omega {\frac{{\mathit{\boldsymbol{a}}\left( {x,\nabla {T_k}\left( u \right)} \right)\nabla \left( {{T_k}\left( {{u_n}} \right) - {T_k}\left( u \right)} \right)}}{{{{\left( {1 + \left| {{T_n}\left( {{u_n}} \right)} \right|} \right)}^\gamma }}}{\rm{d}}x} - \\ \int_{\left\{ {\left| {{u_n}} \right| \ge k} \right\}} {\frac{{\mathit{\boldsymbol{a}}\left( {x,\nabla {T_M}\left( {{u_n}} \right)} \right)}}{{{{\left( {1 + \left| {{T_n}\left( {{u_n}} \right)} \right|} \right)}^\gamma }}}\nabla {T_k}\left( u \right){\rm{d}}x} = \\ {I_{11}} + {I_{12}} + {I_{13}}. \end{array} $

关于I12,由式(2)可知,$\frac{{\mathit{\boldsymbol{a}}(x, \nabla {T_k}(u))}}{{{{(1 + |{T_n}({u_n})|)}^\gamma }}} $在(Lp(Ω, ω))N中强紧,结合式(18),有

$ {I_{12}} = {\varepsilon _n}. $ (26)

关于I13,可整理为

$ {I_{13}} = - \int_\Omega {\frac{{\mathit{\boldsymbol{a}}\left( {x,\nabla {T_M}\left( {{u_n}} \right)} \right)\nabla {T_k}\left( u \right){{\rm{ \mathsf{ χ} }}_{\left\{ {\left| {{u_n}} \right| \ge k} \right\}}}}}{{{{\left( {1 + \left| {{T_n}\left( {{u_n}} \right)} \right|} \right)}^\gamma }}}{\rm{d}}x} . $

n > M,当n→∞时,

$\frac{{\nabla {T_k}(u)\chi \{ |{u_n}| \ge k\} }}{{{{(1 + |{T_n}({u_n})|)}^\gamma }}} \to 0 $于(Lp(Ω, ω))N中强收敛.并且由式(2)可知,a (x, ∇TM(un))在(Lp′(Ω, ω*))N中有界,则有

$ {I_{13}} = {\varepsilon _n}. $

因而,结合I12I13的估计式,I1可整理为

$ \begin{array}{l} {I_1} \ge \\ \int_\Omega {\frac{{\left[ {\mathit{\boldsymbol{a}}\left( {x,\nabla {T_k}\left( {{u_n}} \right)} \right) - \mathit{\boldsymbol{a}}\left( {x,\nabla {T_k}\left( u \right)} \right)} \right]\nabla \left( {{T_k}\left( {{u_n}} \right) - {T_k}\left( u \right)} \right)}}{{{{\left( {1 + \left| {{T_n}\left( {{u_n}} \right)} \right|} \right)}^\gamma }}}{\rm{d}}x} . \end{array} $

综上,注意到式(24)和(25),对n > M > h > k,有

$ \begin{array}{l} {\varepsilon _{n,h}} = {I_1} \ge \\ \int_\Omega {\frac{{\left[ {\mathit{\boldsymbol{a}}\left( {x,\nabla {T_k}\left( {{u_n}} \right)} \right) - \mathit{\boldsymbol{a}}\left( {x,\nabla {T_k}\left( u \right)} \right)} \right]\nabla \left( {{T_k}\left( {{u_n}} \right) - {T_k}\left( u \right)} \right)}}{{{{\left( {1 + k} \right)}^\gamma }}}{\rm{d}}x} . \end{array} $

考虑到式(4),则有

$ \begin{array}{l} \mathop {\lim }\limits_{n \to \infty } \int_\Omega {\left[ {\mathit{\boldsymbol{a}}\left( {x,\nabla {T_k}\left( {{u_n}} \right)} \right) - \mathit{\boldsymbol{a}}\left( {x,\nabla {T_k}\left( u \right)} \right)} \right]\nabla \left( {{T_k}\left( {{u_n}} \right) - } \right.} \\ \;\;\;\;\;\;\left. {{T_k}\left( u \right)} \right){\rm{d}}x = 0. \end{array} $

于是可得,当n→∞时,有

$ {T_k}\left( {{u_n}} \right) \to {T_k}\left( u \right)\;于\;{\left( {{L^p}\left( {\Omega ,\mathit{\boldsymbol{\omega }}} \right)} \right)^N}\;中强收敛. $ (27)

第5步  u为重整化解.

选取unζ作为式(9)的一个检验函数,其中ζD(Ω),且SW1, ∞(Ω)具有紧支集,有

$ \begin{array}{l} \int_\Omega {\frac{{\mathit{\boldsymbol{a}}\left( {x,\nabla {u_n}} \right)}}{{\left( {1 + {T_n}\left( {{u_n}} \right)} \right)}^{\gamma }}\zeta } \cdot \nabla S\left( {{u_n}} \right){\rm{d}}x + \\ \;\;\;\;\;\int_\Omega {\frac{{\mathit{\boldsymbol{a}}\left( {x,\nabla {u_n}} \right)}}{{{{\left( {1 + \left| {{T_n}\left( {{u_n}} \right)} \right|} \right)}^\gamma }}}S\left( {{u_n}} \right)} \cdot \nabla \zeta {\rm{d}}x + \\ \;\;\;\;\;\int_\Omega {{g_n}\left( {x,{u_n}} \right)S\left( {{u_n}} \right)\zeta {\rm{d}}x} = \int_\Omega {{f_n}S\left( {{u_n}} \right)\zeta {\rm{d}}x} . \end{array} $ (28)

由于fnL1(Ω)中是强紧的,且S(un)ζL(Ω)中有界,结合式(17)和(20),当n→∞时,可得

$ \begin{array}{*{20}{c}} {\int_\Omega {{g_n}\left( {x,{u_n}} \right)S\left( {{u_n}} \right)\zeta {\rm{d}}x} \to \int_\Omega {g\left( {x,u} \right)S\left( u \right)\zeta {\rm{d}}x} ,}\\ {\int_\Omega {{f_n}S\left( {{u_n}} \right)\zeta {\rm{d}}x} \to \int_\Omega {fS\left( u \right)\zeta {\rm{d}}x} } \end{array} $

因为函数SS′具有紧支集,那么存在L > 0,使得suppS⊂[-L, L],suppS′⊂[-L, L].当n充分大时,结合式(9)和(17),有

$ \begin{array}{l} \int_\Omega {\frac{{\mathit{\boldsymbol{a}}\left( {x,\nabla {u_n}} \right)}}{{\left( {1 + \left| {{T_n}\left( {{u_n}} \right)} \right|} \right)}^{\gamma }}\zeta } \cdot \nabla S\left( {{u_n}} \right){\rm{d}}x = \\ \;\;\;\;\;\;\;\int_\Omega {\frac{{\mathit{\boldsymbol{a}}\left( {x,\nabla {T_L}\left( {{u_n}} \right)} \right)}}{{{{\left( {1 + \left| {{T_L}\left( {{u_n}} \right)} \right|} \right)}^\gamma }}}\zeta } \cdot \nabla S\left( {{u_n}} \right){\rm{d}}x \to \\ \;\;\;\;\;\;\;\int_\Omega {\frac{{\mathit{\boldsymbol{a}}\left( {x,\nabla {T_L}\left( u \right)} \right)}}{{{{\left( {1 + \left| {{T_L}\left( u \right)} \right|} \right)}^\gamma }}}\zeta } \cdot \nabla S\left( u \right){\rm{d}}x = \\ \;\;\;\;\;\;\;\int_\Omega {\frac{{\mathit{\boldsymbol{a}}\left( {x,\nabla u} \right)}}{{{{\left( {1 + u} \right)}^\gamma }}}\zeta } \cdot \nabla S\left( u \right){\rm{d}}x. \end{array} $

注意到式(2)和(27),当n充分大时,有

$ \begin{array}{l} \int_\Omega {\frac{{\mathit{\boldsymbol{a}}\left( {x,\nabla {u_n}} \right)}}{{{{\left( {1 + \left| {{T_n}\left( {{u_n}} \right)} \right|} \right)}^\gamma }}}} S\left( {{u_n}} \right) \cdot \nabla \zeta {\rm{d}}x = \\ \;\;\;\;\;\;\;\int_\Omega {\frac{{\mathit{\boldsymbol{a}}\left( {x,\nabla {T_L}\left( {{u_n}} \right)} \right)}}{{{{\left( {1 + \left| {{T_L}\left( {{u_n}} \right)} \right|} \right)}^\gamma }}}S\left( {{u_n}} \right)} \cdot \nabla \zeta {\rm{d}}x \to \\ \;\;\;\;\;\;\;\int_\Omega {\frac{{\mathit{\boldsymbol{a}}\left( {x,\nabla {T_L}\left( u \right)} \right)}}{{{{\left( {1 + \left| {{T_L}\left( u \right)} \right|} \right)}^\gamma }}}S\left( u \right)} \cdot \nabla \zeta {\rm{d}}x = \\ \;\;\;\;\;\;\;\int_\Omega {\frac{{\mathit{\boldsymbol{a}}\left( {x,\nabla u} \right)}}{{{{\left( {1 + u} \right)}^\gamma }}}S\left( u \right)} \cdot \nabla \zeta {\rm{d}}x. \end{array} $

综上,对式(28)在n→∞时取极限,可得

$ \begin{array}{l} \int_\Omega {\frac{{\mathit{\boldsymbol{a}}\left( {x,\nabla u} \right)}}{{{{\left( {1 + \left| u \right|} \right)}^\gamma }}}\zeta } \cdot \nabla S\left( u \right){\rm{d}}x + \\ \;\;\;\;\;\int_\Omega {\frac{{\mathit{\boldsymbol{a}}\left( {x,\nabla u} \right)}}{{{{\left( {1 + \left| u \right|} \right)}^\gamma }}}S\left( u \right)} \cdot \nabla \zeta {\rm{d}}x + \\ \;\;\;\;\;\int_\Omega {g\left( {x,u} \right)S\left( u \right)\zeta {\rm{d}}x} = \int_\Omega {fS\left( u \right)\zeta {\rm{d}}x} , \end{array} $

此式等价于式(8).

现证明重整化解存在的条件,即当j→∞时,$ {\smallint _{\{ j < \left| u \right| < j + 1\} }}\frac{{\mathit{\boldsymbol{a}}(x, \nabla u)}}{{{{\left( {1 + |u|} \right)}^\gamma }}} \cdot \nabla u{\rm{d}}x \to 0 $.对n > j+1,运用Lebesgue控制收敛定理以及式(27)和(17)可知,当n→∞时,有

$ \begin{array}{l} \int_\Omega {\frac{{\mathit{\boldsymbol{a}}\left( {x,\nabla {u_n}} \right)}}{{{{\left( {1 + \left| {{T_n}\left( {{u_n}} \right)} \right|} \right)}^\gamma }}}\zeta } \cdot \left| {\nabla \left( {{T_{j + 1}}\left( {{u_n}} \right) - } \right.} \right.\\ \;\;\;\;\;\;\left. {\left. {{T_j}\left( {{u_n}} \right)} \right)} \right|{\rm{d}}x \to \int_\Omega {\frac{{\mathit{\boldsymbol{a}}\left( {x,\nabla u} \right)}}{{{{\left( {1 + \left| u \right|} \right)}^\gamma }}}\zeta } \cdot \\ \;\;\;\;\;\;\left| {\nabla \left( {{T_{j + 1}}\left( {{u_n}} \right) - {T_j}\left( u \right)} \right)} \right|{\rm{d}}x, \end{array} $

j→∞,即可得到

$ \int_{\left\{ {j < \left| u \right| < j + 1} \right\}} {\mathit{\boldsymbol{a}}\left( {x,\nabla u} \right) \cdot \nabla u{\rm{d}}x} \to 0. $
参考文献
[1] BOCCARDO L, DALL'AGLIO A, ORSINA L. Existence and regularity results for some elliptic equations with degenerate coercivity[J]. Atti del Semimario Matematico e Fisico dell' Universitã di Modena, 1998, 46: 51–82.
[2] DAIL L, GAO W J, LI Z Q. Existence of solutions for degenerate elliptic problems in weighted Sobolev space[J]. Journal of Function Spaces, 2015, 2015(71): 1–9.
[3] GIACHETTI D, PORZIO M M. Existence results for some nonuniformly elliptic equations with irregular data[J]. Journal of Mathematical Analysis and Applications, 2001, 257(1): 100–130. DOI:10.1006/jmaa.2000.7324
[4] GIACHETTI D, PORZIO M M. Elliptic equations with degenerate coercivity:Gradient regularity[J]. Acta Mathematica Sinica, 2003, 19(2): 349–370. DOI:10.1007/s10114-002-0235-1
[5] PORRETTA A. Uniqueness and homogenization for a class of non coercive operators in divergence form[J]. Atti del Semimario Matematico e Fisico dell' Universitã di Modena, 1998, 46: 915–936.
[6] CROCE G. The regularizing effects of some lower order terms in an elliptic equation with degenerate coercivity[J]. Rendiconti di Matematica, 2007, 27: 299–314.
[7] LEONE C, PORRETTA A. Entropy solutions for nonlinear elliptic equations in L1(Ω)[J]. Nonlinear Analysis Theory Methods and Applications, 1998, 32(3): 325–334. DOI:10.1016/S0362-546X(96)00323-9
[8] BOCCARDO L, CROCE G, ORSINA L. Nonlinear degenerate elliptic problems with W01, 1(Ω) solutions[J]. Manuscripta Mathematica, 2012, 137(3/4): 419–439.
[9] GOL'DSHTEIN V, UKHLOV A. Weighted Sobolev spaces and embedding theorems[J]. Transactions of the American Mathematical Society, 2009, 361(7): 3829–3850. DOI:10.1090/S0002-9947-09-04615-7
[10] DRÁBEK P, KUFNER A, MUSTONEN V. Pseudo-monotonicity and degenerated or singular elliptic operators[J]. Bulletin of the Australian Mathematical Society, 1998, 58(2): 213–221. DOI:10.1017/S0004972700032184
[11] AZORERO J P G, ALONSO I P. Hardy inequalities and some critical elliptic and parabolic problems[J]. Journal of Differential Equations, 1998, 144(2): 441–476. DOI:10.1006/jdeq.1997.3375
[12] BLANCHARD D. Truncations and monotonicity methods for parabolic equations[J]. Nonlinear Analysis:Theory, Methods and Applications, 1993, 21(10): 725–743. DOI:10.1016/0362-546X(93)90120-H
[13] BLANCHARD D, MURAT F, REDWANE H. Existence and uniqueness of a renormalized solution for a fairly general class of nonlinear parabolic problems[J]. Journal of Differential Equations, 2001, 177(2): 331–374. DOI:10.1006/jdeq.2000.4013
[14] BENILAN P, BREZIS H, CRANDALL M G. A semilinear equation in L1(RN)[J]. Annali della Scuola Normale Superiore di Pisa, Classe di Scienze(Serie Ⅳ), 1975, 2(4): 523–555.
[15] LIONS J L. Quelques Méthodes de Résolution des Problemes aux Limites Nonlinéaires[M]. Paris: Dunod, 1969.
[16] SCHAFT A V D. Nonlinear systems analysis:M. Vidyasagar[J]. Automatica, 1994, 30(10): 1631–1632. DOI:10.1016/0005-1098(94)90103-1