文章快速检索     高级检索
  浙江大学学报(理学版)  2018, Vol. 45 Issue (5): 540-544  DOI:10.3785/j.issn.1008-9497.2018.05.004
0

引用本文 [复制中英文]

赵如慧, 韩晓玲. 二阶三点边值问题的对称正解[J]. 浙江大学学报(理学版), 2018, 45(5): 540-544. DOI: 10.3785/j.issn.1008-9497.2018.05.004.
[复制中文]
ZHAO Ruhui, HAN Xiaoling. Symmetric positive solutions for the second-order three-point boundary value problems[J]. Journal of Zhejiang University(Science Edition), 2018, 45(5): 540-544. DOI: 10.3785/j.issn.1008-9497.2018.05.004.
[复制英文]

基金项目

国家自然科学基金资助项目(11561063)

作者简介

赵如慧(1992-), ORCID:http://orcid.org/0000-0003-2746-0413, 女, 硕士研究生, 主要从事常微分边值问题研究, E-mail:1720907089@qq.com

通信作者

韩晓玲, ORCID:http://orcid.org/0000-0002-0670-9657, E-mail:hanxiaoling9@163.com

文章历史

收稿日期:2017-12-29
二阶三点边值问题的对称正解
赵如慧 , 韩晓玲     
西北师范大学 数学与统计学院, 甘肃 兰州 730070
摘要: 运用迭代法研究了二阶三点边值问题:$\left\{ \begin{array}{l} u''\left( t \right) + q\left( t \right)f\left( {t,u\left( t \right),u'\left( t \right)} \right) = 0,t \in \left( {0,1} \right),\\ u\left( t \right) = u\left( {1 - t} \right),u'\left( 0 \right) - u'\left( 1 \right) = u\left( {\frac{1}{2}} \right) \end{array} \right.$对称正解的存在性,其中f:[0, 1]×[0,+∞)×R→[0,+∞)连续;qt)≥ 0,t∈(0,1).
关键词: 二阶三点边值问题    对称正解    单调迭代    
Symmetric positive solutions for the second-order three-point boundary value problems
ZHAO Ruhui, HAN Xiaoling     
College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China
Abstract: In this paper, we investigate the existence of symmetric positive solutions for the following second-order three-point boundary value problems:$\left\{ \begin{array}{l} u''\left( t \right) + q\left( t \right)f\left( {t,u\left( t \right),u'\left( t \right)} \right) = 0,t \in \left( {0,1} \right),\\ u\left( t \right) = u\left( {1 - t} \right),u'\left( 0 \right) - u'\left( 1 \right) = u\left( {\frac{1}{2}} \right) \end{array} \right.$, where f:[0, 1]×[0, +∞)×R→[0, +∞) is continuous; q(t) ≥ 0, t∈(0, 1).
Key words: second-order three-point boundary value problem    symmetric positive solutions    monotone iterative    
0 引言

非局部边值问题在物理模型、生物学、数学等领域得到了广泛研究.在过去的几十年里, 大量文献研究了此类边值问题正解的存在性[1-5].近几年, 出现了对此类边值问题对称正解的存在性的研究[6-9].最近, 文献[10]讨论了二阶三点边值问题:

$ \left\{ \begin{array}{l} u''\left( t \right) + a\left( t \right)f\left( {t,u\left( t \right)} \right) = 0,t \in \left( {0,1} \right),\\ u\left( t \right) = u\left( {1 - t} \right),u'\left( 0 \right) - u'\left( 1 \right) = u\left( {\frac{1}{2}} \right) \end{array} \right. $

对称正解的存在性, 其中a: (0, 1)→[0, +∞)在(0, 1)上是对称的, f: [0, 1]×[0, +∞)×R→[0, +∞)是连续的, 并且f(·, u)在[0, 1]上对称, 通过Krasnosel'skii不动点定理获得了上述边值问题对称正解的存在性.

受以上结果的启发, 本文主要研究二阶三点边值问题

$ u''\left( t \right) + q\left( t \right)f\left( {t,u\left( t \right),u'\left( t \right)} \right) = 0,t \in \left( {0,1} \right), $ (1)
$ u\left( t \right) = u\left( {1 - t} \right),u'\left( 0 \right) - u'\left( 1 \right) = u\left( {\frac{1}{2}} \right) $ (2)

对称正迭代解的存在性.本文假设

(H1)  f: [0, 1]×[0, +∞)×R→[0, +∞)连续, f(t, u, v)>0并且在t∈[0, 1]上f(t, u, v)=f(1-t, u, -v);

(H2)  对任意(t, v)∈$\left[ {0, \frac{1}{2}} \right]$×R, f(t, ·, v)非减; 对任意(t, u)∈$\left[ {0, \frac{1}{2}} \right]$×[0, +∞), f(t, u, ·)非减;

(H3)  q(t)是定义在(0, 1)上的非负连续函数, 满足q(t)=q(1-t), 并且在(0, 1)的任何子区间上不恒为零, 且

$ \int_0^1 {q\left( t \right){\rm{d}}t} < + \infty . $
1 预备知识

定义1  设E是Banach空间, 且PE上的非空凸闭集.满足:

(1) 对任意的uP, λ≥0, 有λuP;

(2) u, -uP, 有u=θ,

P是一个锥.

定义2  设(E, ≤)是序Banach空间, 若对任意u, vEuvφ(u)≤φ(v), 则算子φ: EE非减.若不等号是严格的, 则称φ是严格非减的.

定义3  设E=C1[0, 1], uE, 若对任意t1, t2∈[0, 1]且λ∈[0, 1]有u(λt1+(1-λ)t2)≥λu(t1)+(1-λ)u(t2), 则称u在[0, 1]上是凹的.

定义4  若函数u(t)满足u(t)=u(1-t), 则称u(t)在[0, 1]上对称.

定义5  若函数u*在[0, 1]上是正对称的, 且满足式(1)和(2), 则称函数u*是边值问题(1)和(2)的一个对称正解.

记空间E=C1[0, 1], 令其范数为

$ \left\| u \right\| = \max \left\{ {{{\left\| u \right\|}_\infty },{{\left\| {u'} \right\|}_\infty }} \right\}, $

这里‖u=$\mathop {\max }\limits_{t \in \left[ {0, 1} \right]} $|u(t)|.

$ {C^ + }\left[ {0,1} \right] = \left\{ {u \in E:u\left( t \right) \ge 0,t \in \left[ {0,1} \right]} \right\} $

定义锥P={uE: u(t)≥0, u是[0, 1]上的凹函数, 且u(t)=u(1-t)}.

引理1  设y(t)∈C[0, 1]且在[0, 1]上对称, 则三点边值问题

$ u''\left( t \right) + y\left( t \right) = 0,t \in \left( {0,1} \right), $ (3)
$ u\left( t \right) = u\left( {1 - t} \right),u'\left( 0 \right) - u'\left( 1 \right) = u\left( {\frac{1}{2}} \right) $ (4)

有唯一对称解

$ u\left( t \right) = \int_0^1 {G\left( {t,s} \right)y\left( s \right){\rm{d}}s} , $

其中,

$ \begin{array}{l} \\ G\left( {t,s} \right) = {G_1}\left( {t,s} \right) + {G_2}\left( s \right), \end{array} $
$ {G_1}\left( {t,s} \right) = \left\{ \begin{array}{l} t\left( {1 - s} \right),0 \le t \le s \le 1,\\ s\left( {1 - t} \right),0 \le s \le t \le 1, \end{array} \right. $
$ {G_2}\left( {t,s} \right) = \left\{ \begin{array}{l} 1 - \frac{s}{2},0 \le s \le \frac{1}{2},\\ \frac{{1 + s}}{2},\frac{1}{2} \le s \le 1. \end{array} \right. $

对于任意u(t)∈C+[0, 1], 定义算子T:

$ \left( {Tu} \right)\left( t \right) = \int_0^1 {G\left( {t,s} \right)q\left( s \right)f\left( {s,u\left( s \right),u'\left( s \right)} \right){\rm{d}}s} ,t \in \left[ {0,1} \right], $ (5)

则算子T的不动点是问题(1)和(2)的解.

注1  由算子的定义, 易得

$ \begin{array}{l} {\left( {Tu} \right)^\prime }\left( t \right) = - \int_0^t {sq\left( s \right)f\left( {s,u\left( s \right),u'\left( s \right)} \right){\rm{d}}s} + \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\int_t^1 {\left( {1 - s} \right)q\left( s \right)f\left( {s,u\left( s \right),u'\left( s \right)} \right){\rm{d}}s} . \end{array} $

引理2  若(H2)成立, 则算子T: PP全连续, 且T是非减的.

证明  对任意yP, 根据算子T的定义, 有

$ \left\{ \begin{array}{l} {\left( {Tu} \right)^{\prime \prime }}\left( t \right) + y\left( t \right) = 0,t \in \left( {0,1} \right),\\ \left( {Tu} \right)\left( t \right) = \left( {Tu} \right)\left( {1 - t} \right),\\ {\left( {Tu} \right)^\prime }\left( 0 \right) - {\left( {Tu} \right)^\prime }\left( 1 \right) = \left( {Tu} \right)\left( {\frac{1}{2}} \right). \end{array} \right. $
$ \begin{array}{l} \left( {Tu} \right)\left( {1 - t} \right) = \int_0^{1 - t} {stq\left( s \right)f\left( {s,u\left( s \right),u'\left( s \right)} \right){\rm{d}}s} + \\ \;\;\;\;\;\;\int_{1 - t}^1 {\left( {1 - t} \right)\left( {1 - s} \right)q\left( s \right)f\left( {s,u\left( s \right),u'\left( s \right)} \right){\rm{d}}s} + \\ \;\;\;\;\;\;\int_0^1 {{G_2}\left( s \right)q\left( s \right)f\left( {s,u\left( s \right),u'\left( s \right)} \right){\rm{d}}s} = \\ \;\;\;\;\;\;\int_1^t {\left( {1 - s} \right)sq\left( {1 - s} \right)f\left( {1 - s,u'\left( {1 - s} \right)} \right){\rm{d}}\left( {1 - s} \right)} + \\ \;\;\;\;\;\;\int_t^0 {\left( {1 - t} \right)sq\left( {1 - s} \right)f\left( {1 - s,u'\left( {1 - s} \right)} \right){\rm{d}}\left( {1 - s} \right)} + \\ \;\;\;\;\;\;\int_0^1 {{G_2}\left( s \right)q\left( s \right)f\left( {s,u\left( s \right),u'\left( s \right)} \right){\rm{d}}s} = \\ \;\;\;\;\;\;\int_0^t {\left( {1 - t} \right)sq\left( s \right)f\left( {s,u\left( s \right),u'\left( s \right)} \right){\rm{d}}s} + \\ \;\;\;\;\;\;\int_t^1 {\left( {1 - s} \right)tq\left( s \right)f\left( {s,u\left( s \right),u'\left( s \right)} \right){\rm{d}}s} + \\ \;\;\;\;\;\;\int_0^1 {{G_2}\left( s \right)q\left( s \right)f\left( {s,u\left( s \right),u'\left( s \right)} \right){\rm{d}}s} = \left( {Tu} \right)\left( t \right), \end{array} $

即(Tu)(t)在[0, 1]上是凹的, 且(Tu)(t)=(Tu)(1-t), 故T(P)⊂P.

下证算子T: PP是全连续的.算子T显然是连续的, 只须证T是紧的.

设有界集Ω0P, 则存在一个R使得Ω0⊂{uP: ‖u‖≤R}.对任意uP, 有

$ \begin{array}{l} 0 \le f\left( {s,u\left( s \right),u'\left( s \right)} \right) \le \max \left\{ {f\left( {s,u\left( s \right),u'\left( s \right)} \right)\left| {s \in } \right.} \right.\\ \;\;\;\left. {\left[ {0,1} \right],u \in \left[ {0,R} \right],u' \in \left[ { - R,R} \right]} \right\} = M. \end{array} $

因此, 由式(5)有

$ {\left\| {Tu} \right\|_\infty } \le M\int_0^1 {q\left( s \right){\rm{d}}s} , $
$ \begin{array}{l} {\left\| {{{\left( {Tu} \right)}^\prime }} \right\|_\infty } \le \int_0^1 {\left( {1 - s} \right)q\left( s \right)f\left( {s,u\left( s \right),u'\left( s \right)} \right){\rm{d}}s} \le \\ \;\;\;\;M\int_0^1 {\left( {1 - s} \right)q\left( s \right){\rm{d}}s} \le M\int_0^1 {q\left( s \right){\rm{d}}s} , \end{array} $

上式显然有界, 故(Tu)(t)一致有界.

下证(Tu)(t)等度连续.对任意的t1, t2∈[0, 1], t1t2, 有

$ \begin{array}{l} \left| {\left( {Tu} \right)\left( {{t_2}} \right) - \left( {Tu} \right)\left( {{t_1}} \right)} \right| = \\ \;\;\;\;\left| {\int_0^1 {G\left( {{t_2},s} \right)q\left( s \right)f\left( {s,u\left( s \right),u'\left( s \right)} \right){\rm{d}}s} - } \right.\\ \;\;\;\;\left. {\int_0^1 {G\left( {{t_1},s} \right)q\left( s \right)f\left( {s,u\left( s \right),u'\left( s \right)} \right){\rm{d}}s} } \right| = \\ \;\;\;\;\left| {\int_0^1 {\left[ {G\left( {{t_2},s} \right) - G\left( {{t_1},s} \right)} \right]q\left( s \right)f\left( {s,u\left( s \right),u'\left( s \right)} \right){\rm{d}}s} } \right| \le \\ \;\;\;\;M\int_0^1 {q\left( s \right){\rm{d}}s\left| {{t_2} - {t_1}} \right|} , \end{array} $

更进一步

$ \begin{array}{l} \left| {{{\left( {Tu} \right)}^\prime }\left( {{t_2}} \right) - {{\left( {Tu} \right)}^\prime }\left( {{t_1}} \right)} \right| = \\ \;\;\;\;\;\left| { - \int_0^{{t_2}} {sq\left( s \right)f\left( {s,u\left( s \right),u'\left( s \right)} \right){\rm{d}}s} + } \right.\\ \;\;\;\;\;\int_{{t_2}}^1 {\left( {1 - s} \right)q\left( s \right)f\left( {s,u\left( s \right),u'\left( s \right)} \right){\rm{d}}s} + \\ \;\;\;\;\;\int_0^{{t_1}} {sq\left( s \right)f\left( {s,u\left( s \right),u'\left( s \right)} \right){\rm{d}}s} - \\ \;\;\;\;\;\left. {\int_{{t_1}}^1 {\left( {1 - s} \right)q\left( s \right)f\left( {s,u\left( s \right),u'\left( s \right)} \right){\rm{d}}s} } \right| = \\ \;\;\;\;\;\left| {\int_{{t_1}}^{{t_2}} {sq\left( s \right)f\left( {s,u\left( s \right),u'\left( s \right)} \right){\rm{d}}s} + } \right.\\ \;\;\;\;\;\left. {\int_{{t_1}}^{{t_2}} {\left( {1 - s} \right)q\left( s \right)f\left( {s,u\left( s \right),u'\left( s \right)} \right){\rm{d}}s} } \right| = \\ \;\;\;\;\;\left| {\int_{{t_1}}^{{t_2}} {q\left( s \right)f\left( {s,u\left( s \right),u'\left( s \right)} \right){\rm{d}}s} } \right| \le M\int_{{t_1}}^{{t_2}} {q\left( s \right){\rm{d}}s} . \end{array} $

故(Tu)(t)是等度连续的, 由Ascoli-Arzela定理得T0)是紧集.因此T: PP是全连续的.

最后证明Tu关于u是非减的.对于任意的uiP(i=1, 2), u1(t)≤u2(t), 由锥的性质, 有u2(t)-u1(t)∈P.因此, 有

$ \left\{ \begin{array}{l} {{u'}_2}\left( t \right) \ge {{u'}_1}\left( t \right),t \in \left[ {0,\frac{1}{2}} \right],\\ {{u'}_2}\left( t \right) \le {{u'}_1}\left( t \right),t \in \left[ {\frac{1}{2},1} \right]. \end{array} \right. $

t$\left[ {0, \frac{1}{2}} \right]$时, 根据(H2)和Tu的定义, 有

$ \begin{array}{l} \left( {T{u_1}} \right)\left( t \right) - \left( {T{u_2}} \right)\left( t \right) = \\ \;\;\;\;\;\int_0^1 {G\left( {t,s} \right)q\left( s \right)f\left( {s,{u_1}\left( s \right),{{u'}_1}\left( s \right)} \right){\rm{d}}s} - \\ \;\;\;\;\;\int_0^1 {G\left( {t,s} \right)q\left( s \right)f\left( {s,{u_2}\left( s \right),{{u'}_2}\left( s \right)} \right){\rm{d}}s} , \end{array} $
$ \begin{array}{l} {\left( {T{u_2}} \right)^\prime }\left( t \right) - {\left( {T{u_1}} \right)^\prime }\left( t \right) = \\ \;\;\;\; - \int_0^t {sq\left( s \right)f\left( {s,{u_2}\left( s \right),{{u'}_2}\left( s \right)} \right){\rm{d}}s} + \\ \;\;\;\;\int_t^1 {\left( {1 - s} \right)q\left( s \right)f\left( {s,{u_2}\left( s \right),{{u'}_2}\left( s \right)} \right){\rm{d}}s} + \\ \;\;\;\;\int_0^t {sq\left( s \right)f\left( {s,{u_1}\left( s \right),{{u'}_1}\left( s \right)} \right){\rm{d}}s} + \\ \;\;\;\;\int_t^1 {\left( {1 - s} \right)q\left( s \right)f\left( {s,{u_1}\left( s \right),{{u'}_1}\left( s \right)} \right){\rm{d}}s} . \end{array} $

为证明(Tu2)(t)-(Tu1)(t)是凹的, 只须证(Tu2)′(t)-(Tu1)′(t)是非减的.令0≤t1t2$\frac{1}{2}$, 则

$ \begin{array}{l} {\left( {T{u_2}} \right)^\prime }\left( {{t_2}} \right) - {\left( {T{u_1}} \right)^\prime }\left( {{t_2}} \right) - {\left( {T{u_2}} \right)^\prime }\left( {{t_1}} \right) + {\left( {T{u_1}} \right)^\prime }\left( {{t_1}} \right) = \\ \;\;\;\;\;\;\;\int_{{t_1}}^{{t_2}} {q\left( s \right)f\left( {s,{u_1}\left( s \right),{{u'}_1}\left( s \right)} \right){\rm{d}}s} - \\ \;\;\;\;\;\;\;\int_{{t_1}}^{{t_2}} {q\left( s \right)f\left( {s,{u_2}\left( s \right),{{u'}_2}\left( s \right)} \right){\rm{d}}s} \le 0. \end{array} $

同理可证当t$\left[ {\frac{1}{2}, 1} \right]$时, 上述结论也成立.且易证(Tu2)(t)-(Tu1)(t)是对称的, 故(Tu2-Tu1)∈P, 则T是非减的.

2 主要结果及证明

定理1  假设(H1)~(H3)成立, 若存在2个正数a1a, 使得

$ {\sup _{t \in \left[ {0,1} \right]}}f\left( {t,a,a} \right) \le {a_1}, $ (6)

其中aa1满足

$ \frac{{4a}}{5} \ge \max \left\{ {\int_0^1 {q\left( s \right){\rm{d}}s} ,\int_0^1 {\left( {1 - s} \right)q\left( s \right){\rm{d}}s} ,\int_0^1 {sq\left( s \right){\rm{d}}s} } \right\}{a_1}, $ (7)

则式(1)和式(2)有2个正的凹解u*w*, 使得

$ 0 < \left\| {{u^ * }} \right\| \le a, $
$ 0 < \left\| {{w^ * }} \right\| \le a, $

并且

$ \mathop {\lim }\limits_{n \to \infty } {u_n} = \mathop {\lim }\limits_{n \to \infty } {T^n}{u_0} = {u^ * }, $
$ \mathop {\lim }\limits_{n \to \infty } {\left( {{u_n}} \right)^\prime } = \mathop {\lim }\limits_{n \to \infty } {\left( {{T^n}{u_0}} \right)^\prime } = {\left( {{u^ * }} \right)^\prime }, $
$ \mathop {\lim }\limits_{n \to \infty } {w_n} = \mathop {\lim }\limits_{n \to \infty } {T^n}{w_0} = {w^ * }, $
$ \mathop {\lim }\limits_{n \to \infty } {\left( {{w_n}} \right)^\prime } = \mathop {\lim }\limits_{n \to \infty } {\left( {{T^n}{w_0}} \right)^\prime } = {\left( {{w^ * }} \right)^\prime }. $

其中, u0(t)=$\frac{4}{5}$at(1-t)+$\frac{4}{5}$a, 0≤t≤1;

$ {w_0}\left( t \right) = 0,0 \le t \le 1. $

迭代方法为un+1=Tun=Tnu0, wn+1=Twn=Tnw0.

证明  令$\overline {{P_a}} $={uP: 0≤‖u‖≤a}. 先证T$\overline {{P_a}} $$\overline {{P_a}} $.

对任意的u$\overline {{P_a}} $, 有

$ 0 \le u\left( t \right) \le \mathop {\max }\limits_{t \in \left[ {0,1} \right]} \left| {u\left( t \right)} \right| \le \left\| u \right\| \le a, $
$ \left| {u'\left( t \right)} \right| \le \mathop {\max }\limits_{t \in \left[ {0,1} \right]} \left| {u'\left( t \right)} \right| \le \left\| u \right\| \le a. $

由(H2)及式(6)得

$ 0 \le f\left( {t,u\left( t \right),u'\left( t \right)} \right) \le \mathop {\sup }\limits_{t \in \left[ {0,1} \right]} f\left( {t,a,a} \right) \le {a_1}. $ (8)

对任意u(t)∈$\overline {{P_a}} $, 由引理2有TuP, 且

$ \begin{array}{l} {\left\| {Tu} \right\|_\infty }\left( {Tu} \right)\left( {\frac{1}{2}} \right) = \\ \;\;\;\;\int_0^1 {G\left( {\frac{1}{2},s} \right)q\left( s \right)f\left( {s,u\left( s \right),u'\left( s \right)} \right){\rm{d}}s} = \\ \;\;\;\;\int_0^{\frac{1}{2}} {\frac{1}{2}sq\left( s \right)f\left( {s,u\left( s \right),u'\left( s \right)} \right){\rm{d}}s} + \\ \;\;\;\;\int_0^{\frac{1}{2}} {\frac{1}{2}\left( {1 - s} \right)q\left( s \right)f\left( {s,u\left( s \right),u'\left( s \right)} \right){\rm{d}}s} + \\ \;\;\;\;\int_0^1 {{G_2}\left( s \right)q\left( s \right)f\left( {s,u\left( s \right),u'\left( s \right)} \right){\rm{d}}s} \le \\ \;\;\;\;{a_1}\int_0^{\frac{1}{2}} {q\left( s \right){\rm{d}}s} + {a_1}\int_{\frac{1}{2}}^1 {q\left( s \right){\rm{d}}s} \le \\ \;\;\;\;{a_1}\int_0^1 {q\left( s \right){\rm{d}}s} \le a; \end{array} $
$ \begin{array}{l} {\left\| {{{\left( {Tu} \right)}^\prime }} \right\|_\infty } = {\left( {Tu} \right)^\prime }\left( 0 \right) = \\ \;\;\;\;\int_0^1 {\left( {1 - s} \right)q\left( s \right)f\left( {s,u\left( s \right),u'\left( s \right)} \right){\rm{d}}s} \le \\ \;\;\;\;{a_1}\int_0^1 {\left( {1 - s} \right)q\left( s \right){\rm{d}}s} \le a. \end{array} $

得到‖Tu‖≤a, 故T$\overline {{P_a}} $$\overline {{P_a}} $.

一方面, 令

$ {u_0}\left( t \right) = \frac{4}{5}at\left( {1 - t} \right) + \frac{4}{5}a \le a, $

$ {u_0}^\prime \left( t \right) = - \frac{8}{5}at + \frac{4}{5}a \le a, $

从而u0$\overline {{P_a}} $.

u1=Tu0, 同理可证u1$\overline {{P_a}} $.

定义

$ {u_{n + 1}} = T{u_n} = {T^{n + 1}}{u_0},n = 0,1,2, \cdots , $ (9)

由于T是全连续的, 故{un}是紧集.因为

$ \begin{array}{l} {u_1}\left( t \right) = \left( {T{u_0}} \right)\left( t \right) = \\ \;\;\;\;\;\;\;\;\;\;\;\int_0^1 {G\left( {t,s} \right)q\left( s \right)f\left( {s,{u_0}\left( s \right),{{u'}_0}\left( s \right)} \right){\rm{d}}s} = \\ \;\;\;\;\;\;\;\;\;\;\;\int_0^1 {{G_1}\left( {t,s} \right)q\left( s \right)f\left( {s,{u_0}\left( s \right),{{u'}_0}\left( s \right)} \right){\rm{d}}s} + \\ \;\;\;\;\;\;\;\;\;\;\;\int_0^1 {{G_2}\left( s \right)q\left( s \right)f\left( {s,{u_0}\left( s \right),{{u'}_0}\left( s \right)} \right){\rm{d}}s} \le \\ \;\;\;\;\;\;\;\;\;\;\;{a^1}t\left( {1 - t} \right)\int_0^1 {q\left( s \right)ds} + {a_1}\int_0^1 {q\left( s \right){\rm d}s} \le \\ \;\;\;\;\;\;\;\;\;\;\;\frac{4}{5}at\left( {1 - t} \right) + \frac{4}{5}a = {u_0}, \end{array} $

而且

$ \begin{array}{l} \left| {{{u'}_1}\left( t \right)} \right| = \left| {{{\left( {T{u_0}} \right)}^\prime }\left( t \right)} \right| = \\ \;\;\;\;\;\;\;\;\;\;\;\;\left| { - \int_0^1 {sq\left( s \right)f\left( {s,{u_1}\left( s \right),{{u'}_1}\left( s \right)} \right){\rm{d}}s} + } \right.\\ \;\;\;\;\;\;\;\;\;\;\;\;\left. {\int_0^1 {\left( {1 - s} \right)q\left( s \right)f\left( {s,{u_1}\left( s \right),{{u'}_1}\left( s \right)} \right){\rm{d}}s} } \right| \le \\ \;\;\;\;\;\;\;\;\;\;\;\;\int_0^1 {sq\left( s \right)f\left( {s,{u_1}\left( s \right),{{u'}_1}\left( s \right)} \right){\rm{d}}s} + \\ \;\;\;\;\;\;\;\;\;\;\;\;\int_0^1 {\left( {1 - s} \right)q\left( s \right)f\left( {s,{u_1}\left( s \right),{{u'}_1}\left( s \right)} \right){\rm{d}}s} = \\ \;\;\;\;\;\;\;\;\;\;\;\;\int_0^1 {q\left( s \right)f\left( {s,{u_1}\left( s \right),{{u'}_1}\left( s \right)} \right){\rm{d}}s} \le \\ \;\;\;\;\;\;\;\;\;\;\;\;{a_1}\int_0^1 {q\left( s \right){\rm d}s} \le \frac{4}{5}a = \left| {{{u'}_0}\left( t \right)} \right|, \end{array} $

从而u1(t)≤u0(t), |u1′(t)|≤|u0′(t)|, 0<t<1.

由引理2及式(9), 有

$ {u_{n + 1}}\left( t \right) \le {u_n}\left( t \right),{{u'}_{n + 1}}\left( t \right) \le {{u'}_n}\left( t \right), $
$ 0 < t < 1,n = 1,2, \cdots , $

因此存在u*$\overline {{P_a}} $, 使得unu*.根据T的连续性和un+1(t)=Tun(t), 可得Tu*(t)=u*(t), 则u*是问题(1)和(2)凹的对称正解.

另一方面, 令

$ {\omega _{n + 1}} = T{\omega _n} = {T^{n + 1}}{\omega _0},n = 1,2, \cdots , $

由于T$\overline {{p_a}} $$\overline {{P_a}} $, 则ωn$\overline {{p_a}} $.因为T是全连续的, 故{ωn}是紧集.

因为

$ {\omega _1} = T{\omega _0} = T\left( 0 \right) \in \overline {{p_a}} , $

则有

$ {\omega _1} = T{\omega _0} = T\left( 0 \right)\left( t \right) \ge 0,0 < t < 1, $
$ \left| {{{\omega '}_1}\left( t \right)} \right| = \left| {{{\left( {T{\omega _0}} \right)}^\prime }\left( t \right)} \right| = \left| {T'\left( 0 \right)\left( t \right)} \right| \ge 0,0 < t < 1, $

由引理2及式(9), 有

$ \begin{array}{l} {\omega _{n + 1}}\left( t \right) \ge {\omega _n}\left( t \right),\left| {{{\omega '}_{n + 1}}\left( t \right)} \right| \ge \left| {{{\omega '}_n}\left( t \right)} \right|0 < t < 1,\\ \;\;\;\;\;n = 0,1, \cdots , \end{array} $
$ f\left( {t,u,v} \right) = \sqrt u + {\left( {u'} \right)^2} + t\left( {1 - t} \right), $

因此存在ω*$\overline {{p_a}} $, 使ωnω*.由T的连续性和ωn+1(t)=n(t), 可得*(t)=ω*(t), 且ω*>0, 则ω*是问题(1)和(2)凹的对称正解.证毕!

3 举例

考虑边值问题

$ u''\left( t \right) + \frac{1}{{20}}\left( {\frac{1}{{\sqrt t }} + \frac{1}{{\sqrt {1 - t} }}} \right)\left[ {\sqrt u + {{\left( {u'} \right)}^2} + t\left( {1 - t} \right)} \right] = 0, $ (10)
$ u\left( t \right) = u\left( {1 - t} \right),u'\left( 0 \right) - u'\left( 1 \right) = u\left( {\frac{1}{2}} \right),t \in \left( {0,1} \right), $ (11)

其中,     f(t, u, v)=$\sqrt u $+(u′)2+t(1-t),

$ q\left( t \right) = \frac{1}{{20}}\left( {\frac{1}{{\sqrt t }} + \frac{1}{{\sqrt {1 - t} }}} \right). $

则(H1)~(H3)成立.令a=1, a1=3满足式(6), 则由定理1可得边值问题(10)和(11)有2个凹的对称解u*, ω*, 使得

$ {\left\| {{u^ * }} \right\|_\infty } \le 1,{\left\| {{\omega ^ * }} \right\|_\infty } \le 1, $

并且

$ \mathop {\lim }\limits_{n \to \infty } {T^n}{u_0} = {u^ * },\mathop {\lim }\limits_{n \to \infty } {T^n}{\omega _0} = {\omega ^ * }. $

其中,

$ {u_0}\left( t \right) = \frac{4}{5}t\left( {1 - t} \right) + \frac{4}{5},{\omega _0}\left( t \right) = 0,0 \le t \le 1. $
参考文献
[1] SUN Y P. Positive solution of singular third-order three-point boundary value problem[J]. Journal of Mathematical Analysis and Applications, 2005, 306(2): 589–603. DOI:10.1016/j.jmaa.2004.10.029
[2] ZHAO Y H. Existence of positive solution for a nonlinear three-point boundary value problem[J]. Pure and Applied Mathematics, 2011, 9(2): 201–214.
[3] HOUAS M, BENBACHIR M. Existence solutions for three point boundary value problem for differential equations[J]. Journal of Fractional Calculus and Applications, 2015, 6(1): 160–174.
[4] TIAN Y S, CHEN A P. The existence of positive solution to three-point singular boundary value problem of fractional differential equation[J]. Abstract and Applied Analysis, 2014, 2009(2): 439–443.
[5] MA D X, GE W G. Existence and iteration of positive pseudo-symmetric solution for a three-point second-order p-Laplacian BVP[J]. Applied Mathematics Letters, 2007, 20(12): 1244–1249. DOI:10.1016/j.aml.2006.05.025
[6] ZHAO X K, GE W G. The existence of positive pseudo-symmetric solution for a three-point boundary value problem[J]. Electronic Journal of Differential Equations, 2007, 22(22): 139–143.
[7] SUN Y P. Multiplicity of solutions to a four-point boundary value problem of a differential system via variational approach[J]. Nonlinear Analysis Theory Methods and Applications, 2008, 69(12): 4266–4276. DOI:10.1016/j.na.2007.10.050
[8] TARIBOON J, SUDSUTAD W. Positive solutions of a nonlinear m-point integral boundary value problem[J]. Applied Mathematical Sciences, 2014, 4(1): 202–214.
[9] SUN Y, YAN K. Existence of solution for fractional differential equation three-point boundary value problem[J]. Journal of Applied Analysis and Computation, 2016, 6(4): 939–949.
[10] SUN Y P. Existence multiplicity of symmetric positive solutions for three-point boundary value problem[J]. Journal of Mathematical Analysis and Applications, 2007, 329(2): 998–1009. DOI:10.1016/j.jmaa.2006.07.001