文章快速检索     高级检索
  浙江大学学报(理学版)  2018, Vol. 45 Issue (5): 533-539  DOI:10.3785/j.issn.1008-9497.2018.05.003
0

引用本文 [复制中英文]

寇艳芳, 陈祥恩, 王治文. K1, 5, pK1, 6, p的点可区别的IE-全染色及一般全染色[J]. 浙江大学学报(理学版), 2018, 45(5): 533-539. DOI: 10.3785/j.issn.1008-9497.2018.05.003.
[复制中文]
KOU Yanfang, CHEN Xiangen, WANG Zhiwen. Vertex-distinguishing IE-total coloring and general-total coloring of K1, 5, p and K1, 6, p[J]. Journal of Zhejiang University(Science Edition), 2018, 45(5): 533-539. DOI: 10.3785/j.issn.1008-9497.2018.05.003.
[复制英文]

基金项目

国家自然科学基金资助项目(11761064,61163037,11261046);宁夏回族自治区百人计划资助项目

作者简介

寇艳芳(1988-), ORCID:http://orcid.org/0000-0003-0309-317X, 女, 硕士研究生, 主要从事图论及其应用研究, E-mail:kouyanfang2016@163.com

文章历史

收稿日期:2017-09-17
K1, 5, pK1, 6, p的点可区别的IE-全染色及一般全染色
寇艳芳1 , 陈祥恩1 , 王治文2     
1. 西北师范大学 数学与统计学院, 甘肃 兰州 730070;
2. 宁夏大学 数学与统计学院, 宁夏 银川 750021
摘要: 利用色集事先分配法、构造染色法和反证法,探讨了完全三部图K1,5,pK1,6,p的点可区别IE-全染色和点可区别一般全染色问题,确定了K1,5,pK1,6,p的点可区别IE-全色数和点可区别一般全色数.
关键词: 完全三部图    IE-全染色    点可区别IE-全染色    一般全染色    点可区别一般全染色    
Vertex-distinguishing IE-total coloring and general-total coloring of K1, 5, p and K1, 6, p
KOU Yanfang1, CHEN Xiangen1, WANG Zhiwen2     
1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China;
2. School of Mathematics and Statistics, Ningxia University, Yinchuan 750021, China
Abstract: By employing the methods of distributing the color sets in advance and constructing the colorings and contradiction, we discuss the vertex-distinguishing IE-total coloring and vertex-distinguishing general total coloring of complete tripartite graphs K1, 5, p and K1, 6, p. The vertex-distinguishing IE-total chromatic number and vertex-distinguishing general total chromatic number of K1, 5, p and K1, 6, p are determined.
Key words: complete tripartite graph    IE-total coloring    vertex-distinguishing IE-total coloring    general total coloring    vertex-distinguishing general total coloring    
0 引言

点可区别一般边染色由HARARY等[1]于1985年提出,在文献[1-6]中均有涉及.

近年来,点可区别的未必正常的全染色也得以研究.CHEN等[7]提出了点可区别IE-全染色,而LIU等[8]提出了一般点可区别全染色.

定义  图G的一个k-一般全染色是指映射f: V(G)∪E(G)→[1, k].一旦uvE(G), 则有f(u)≠f(v), 那么称f为图Gk-IE-全染色.设f是图Gk-IE-全染色(或k-一般全染色),对∀xV(G), 用Cf(x)或C(x)表示在fx的颜色及与x关联的边的颜色所构成的集合,称之为顶点xf下的色集合.若对∀u, vV(G), 有C(u)≠C(v),则称f为图Gk-点可区别IE-全染色(k-VDIETC)(或k-点可区别一般vt全染色).记χvtie(G)=min{k|G存在k-VDIETC}为G的点可区别IE-全色数; χgvt(G)=min{k|G存在k-点可区别一般全染色}为G的点可区别一般全色数.点可区别一般全染色也叫一般点可区别全染色,简记为GVDTC; 而点可区别一般全色数也叫一般点可区别全色数[8],LIU等[8]研究了路、圈、星、双星、三星、轮、扇完全图的一般点可区别全染色.

本文研究K1,5,pK1,6,p的点可区别IE-全染色和一般点可区别全染色,并给出了其点可区别IE-全色数和一般点可区别全色数.其完全三部图Kmnp的顶点集合为V=XYZ, 其中,X={x1, x2, …, xm}, Y={y1, y2, …, yn}, Z={z1, z2, …, zp}, 边集合为{xiyj|i=1,2, …, m; j=1,2, …, n}∪{yjzt|j=1,2, …, n; t=1,2, …, p}∪{xizt|i=1,2, …, m; t=1,2, …, p}, 当m=1时,记X={x}.

约定文中图的l-VDIETC或l-GVDTC所使用的l种颜色为1,2, …, l,令Al={1,2, …, l}.

1 准备工作

一个图的点可区别IE-全染色一定是点可区别一般全染色,因此下述命题成立.

命题1  对任意图G,有χgvt(G)≤χvtie(G).

引理1  (ⅰ) 当k≥8, p$ \sum\limits_{\mathit{i}=1}^{7}{\left( \begin{align} &\mathit{k}\text{-1} \\ &\ \ \mathit{i} \\ \end{align} \right)}-5$时,K1,5,p无(k-1)-GVDTC.

(ⅱ) 当5≤k≤7, p=$ \sum\limits_{\mathit{i}\text{=1}}^{\mathit{k}}{\left( \begin{align} &\mathit{k} \\ &\mathit{i} \\ \end{align} \right)}-10$时,K1,5,pk-GVDTC.

证明  (ⅰ) 假定K1,5,p有(k-1)-GVDTC g.若某个1-子集{a}(a∈{1,2, …, k-1})是XY中某点的色集合,则Z中每个点的色集合里含a.而Ak-1中含a的2-子集,3-子集,…, 7-子集,共$ \left( \begin{array}{l} \mathit{k}\text{-2} \\ \ \ \text{1} \\ \end{array} \right)\text{+}\left( \begin{array}{l} \mathit{k}\text{-2} \\ \ \ \text{2} \\ \end{array} \right)\text{+}\cdots \text{+}\left( \begin{array}{l} \mathit{k}\text{-2} \\ \ \ \text{6} \\ \end{array} \right)$个,不能区别Z中诸顶点(因为当k≥8时,有$ \left( \begin{array}{l} \mathit{k}\text{-2} \\ \ \ \text{1} \\ \end{array} \right)\text{+}\left( \begin{array}{l} \mathit{k}\text{-2} \\ \ \ \text{2} \\ \end{array} \right)\text{+}\cdots \text{+}\left( \begin{array}{l} \mathit{k}\text{-2} \\ \ \ \text{6} \\ \end{array} \right)$p), 从而导致矛盾.因此1-子集不是XY中任一点的色集合.

当至少有5个Ak-1的1-子集非Z中任意点的色集合时,p$ \sum\limits_{\mathit{i}=1}^{7}{\left( \begin{align} &\mathit{k}\text{-1} \\ &\ \ \mathit{i} \\ \end{align} \right)}\text{-}5$, 矛盾.

当至多有4个Ak-1的1-子集非Z中任意点的色集合时,不妨设{5}, …, {k-1}均为Z中点的色集合,那么C(x)∩C(yj)⊇{5,6, …, k-1}, 这时{1,2,3,4}的子集$ \overline{\mathit{C}\left( \mathit{x} \right)}, \overline{\mathit{C}\left( {{\mathit{y}}_{\text{1}}} \right)}, \cdots , \overline{\mathit{C}\left( {{\mathit{y}}_{5}} \right)}$ (这6个子集互不相同,且其中至多有1个是空集)均非Z中点的色集合,从而p$ \sum\limits_{\mathit{i}=1}^{4}{\left( \begin{align} &\mathit{k}\text{-1} \\ &\ \ \mathit{i} \\ \end{align} \right)}\text{-}5$, 矛盾.

(ⅱ) 假定K1,5,p存在k-GVDTC g, 若某个1-子集{a}(a∈{1,2, …, k})是XY中某点的色集合,则Z中每个点的色集合中含a, 而Ak中含a的2-子集,3-子集,…, 7-子集只有$ \left( \begin{array}{l} \mathit{k}\text{-1} \\ \ \ \text{1} \\ \end{array} \right)\text{+}\left( \begin{array}{l} \mathit{k}\text{-1} \\ \ \ \text{2} \\ \end{array} \right)\text{+}\cdots \text{+}\left( \begin{array}{l} \mathit{k}\text{-1} \\ \ \ \text{6} \\ \end{array} \right)$个,不能区别Z中诸顶点(因为当5≤k≤7时,有$ \left( \begin{array}{l} \mathit{k}\text{-1} \\ \ \ \text{1} \\ \end{array} \right)\text{+}\left( \begin{array}{l} \mathit{k}\text{-1} \\ \ \ \text{2} \\ \end{array} \right)\text{+}\cdots \text{+}\left( \begin{array} {l} \mathit{k}\text{-1} \\ \ \ \text{6} \\ \end{array} \right)$p, 即15<21,31<53,63<117),导致矛盾.因此1-子集非XY中任一点的色集合.

当某个1-子集是Z中某一点的色集合时,C(x), C(y1), …, C(y5), $\overline{\mathit{C}\left( \mathit{x} \right)}, \overline{\mathit{C}\left( {{\mathit{y}}_{\text{1}}} \right)}, \cdots , \overline{\mathit{C}\left( {{\mathit{y}}_{5}} \right)}$ (这12个子集彼此不同,且其中最多有一个是空集)均非Z中点的色集合,那么p$ \sum\limits_{\mathit{i}\text{=1}}^{\text{7}}{\left( \begin{align} &\mathit{k} \\ &\mathit{i} \\ \end{align} \right)}-11$, 矛盾.

当任意一个1-子集均非Z中点的色集合时,任意1-子集均非K1,5,p中任意一点的色集合,p+6≤$ \sum\limits_{\mathit{i}\text{=1}}^{\text{7}}{\left( \begin{array}{l} \mathit{k} \\ \mathit{i} \\ \end{array} \right)}-\mathit{k}\le \sum\limits_{\mathit{i}\text{=1}}^{\text{7}}{\left( \begin{array}{l} \mathit{k} \\ \mathit{i} \\ \end{array} \right)}-11$, 矛盾.

引理2  当l≥10, 且$ \sum\limits_{\mathit{i}=1}^{7}{\left( \begin{array}{l} \mathit{l}\text{-1} \\ \ \ \mathit{i} \\ \end{array} \right)}\text{-}6<\mathit{p}\le \sum\limits_{\mathit{i}\text{=1}}^{\text{7}}{\left( \begin{array}{l} \mathit{l} \\ \mathit{i} \\ \end{array} \right)}-\text{6}$时,K1,5,p存在l-VDIETC.

证明  为给出K1,5,pl-IE-全染色,先对K1,5,p的每个顶点对应Al的一个子集,令D(y1)=AlD(y2)=Al\{1}, D(y3)=Al\{3}, D(y4)=Al\{4}, D(y5)=Al\{5}, D(x)=Al\{2}, D(zi)={i+5}(i=1,2, …, l-5), D(zl-4)={1,3}, D(zl-3)={2,3}, D(zl-2)={3,4}, D(zl-1)={4,5}, D(zl)={5,6}.将除{1,2}, {1,3}, {2,3}, {3,4}, {4,5}, {5,6}外的Al的其余2- $ \left( \begin{align} &\mathit{l} \\ &\text{3} \\ \end{align} \right)$+子集,3-子集,…, 7-子集排成一个序列$ \mathscr{S}_1$,含$ \left( \begin{align} &\mathit{l} \\ &\text{2} \\ \end{align} \right)$+$ \left( \begin{align} &\mathit{l} \\ &\text{3} \\ \end{align} \right)$+…+$ \left( \begin{align} &\mathit{l} \\ &\text{7} \\ \end{align} \right)$ -6个项,让D(zl+1), D(zl+2), …, D(zp)依次为$ \mathscr{S}_1$中的第1,2, …, p-l项,这是可行的,因为p-l$ \left( \begin{align} &\mathit{l} \\ &\text{2} \\ \end{align} \right)$+$ \left( \begin{align} &\mathit{l} \\ &\text{3} \\ \end{align} \right)$+…+$ \left( \begin{align} &\mathit{l} \\ &\text{7} \\ \end{align} \right)$ -6, 即p$ \left( \begin{align} &\mathit{l} \\ &\text{1} \\ \end{align} \right)$+ $ \left( \begin{align} &\mathit{l} \\ &\text{2} \\ \end{align} \right)$+…+$ \left( \begin{align} &\mathit{l} \\ &\text{7} \\ \end{align} \right)$ -6.

下面给出K1,5,p的一个l-IE-全染色f.令f(x)=1, f(yj)=2, j=1,2, …,5;用max D(zi)染点zii=1,2, …, p.而zi的关联边均染以i+5, i=1,2, …, l-5.对|D(zi)|=2, 用min[D(x)∩D(zi)]染边xzi,min[D(yj)∩D(zi)]染边yjzi, j=1,2, …,5;对|D(zi)|=3, 用min[D(x)∩D(zi)]染边xzi, min[(D(yj)∩D(zi))\{f(xzi)}]染边yjzi, j=1,2, …,5;对|D(zi)|=4, 用min[D(x)∩D(zi)]染边xzi, min[(D(y1)∩D(zi))\{f(xzi)}]染边y1zi, min[(D(yj))∩D(zi)\{f(xzi), f(y1zi)}]染边yjzi, j=2, 3, 4,5;对|D(zi)|=s(5≤s≤7), 用min[D(x)∩D(zi)]染边xzi, min[(D(y1)∩D(zi))\{f(xzi)}]染边y1zi, …, min[(D(yj)∩D(zi))\{f(xzi), f(y1zi), …, f(yj-1zi)}]染边yjzi, j=2, 3, …, s-2;min[D(yj)∩D(zi)]染边yjzi, j=s-1, s, …,5;min[D(x)∩D(yj)]染边xyj, j=1, 2, …,5.

最后得到K1,5,pl-IE全染色f是点可区别的,因为对∀vV(K1,5,p), 均有C(v)=D(v).

引理3  当rn+4, p$ \sum\limits_{\mathit{i}=1}^{\mathit{n}\text{+2}}{\left( \begin{align} &\mathit{r}\text{-1} \\ &\ \ \mathit{i} \\ \end{align} \right)}$-(n+1)时,K1,np无(r-1)-VDIETC,n∈{5,6}.

证明  假设K1,np有(r-1)-VDIETC, 使用的颜色为1,2, …, r-1, 不妨设g(x)=1, 若g(y1), g(y2), …, g(yn)中至少有2个互异,不妨设g(y1)= 2, g(y2)=3.那么{1}, {2}, {3},{1,2}, {1,3}, {2,3},{1,2,3}非Z中任意点的色集合,p$ \sum\limits_{\mathit{i}=1}^{\mathit{n}\text{+2}}{\left( \begin{align} &\mathit{r}\text{-1} \\ &\ \ \mathit{i} \\ \end{align} \right)}$-7≤$ \sum\limits_{\mathit{i}=1}^{\mathit{n}\text{+2}}{\left( \begin{align} &\mathit{r}\text{-1} \\ &\ \ \mathit{i} \\ \end{align} \right)}$-(n+1), 矛盾.因此可假设g(yj)=2, j=1,2, …, n.

假设{3}, {4}, …, {r-1}均为Z中点的色集合,那么{2,3, …, r-1}⊆C(yj), j=1,2, …, n, 矛盾.不妨设{3}为非Z中任意点的色集合,当n=5时,有以下2种情况:

(ⅰ) {4}, {5}, …, {r-1}中有一个非Z中任意点的色集合.不妨设{4}为非Z中任意点的色集合,这样{1}, {2}, {1,2}, {3}, {4}均非Z中点的色集合, 那么除这5个子集外,Ar-1的其他1-子集,2-子集,…,7-子集均为Z中点的色集合,特别地,单元集{5},{6},…,{r-1}及{1,3},{1,4},{2,3},{2,4},{3,4}均为Z中点的色集合.那么{2,5,6, …, k-1}⊆C(yj)(j=1,2, …,5), 且C(yj)含1,3,4中的至少某2种色.故每个C(yj)是Ar-1, Ar-1\{1}, Ar-1\{3}, Ar-1\{4}之一,矛盾.

(ⅱ) {4}, {5}, …, {r-1}均为Z中点的色集合.则{1,4, …, r-1}⊆C(x),{2,4, …, r-1}⊆C(yj)(j=1,2, …,5), 这样每个C(yj)为Ar-1Ar-1\{1},Ar-1\{3}, Ar-1\{1,3}之一, 矛盾.

n=6时,有以下3种情况:

(ⅰ) 当{4}, {5}, …, {r-1}均为Z中点的色集时, 同上可推出矛盾.

(ⅱ) {4}, {5}, …, {r-1}恰有一个不是Z中点的色集,不妨设{4}为非Z中点的色集,那么{2,5,6, …, r-1}⊆C(yj), j=1,2, …,6, 且{1}, {2}, {3}, {4}, {1,2}为非Z中任一点的色集合.{1,3}与{1,4}中至少有1个是Z中点的色集合,不妨设C(z1)={1,4},这样C(yj)是以下集合之一: {2,3,4,5, …, r-1},{1,2,4,5, …, r-1}, {1,2,3,5, …, r-1}, {2,4,5,6, …, r-1}, {1,2,5,6, …, r-1}, {1,2,3,4, …, r-1}, 从而说明{1}, {2}, {1,2}, {3}, {4}, {1,3}, {3,4}均非Z中点的色集合,p$ \sum\limits_{\mathit{i}=1}^{\mathit{n}\text{+2}}{\left( \begin{align} &\mathit{r}\text{-1} \\ &\ \ \mathit{i} \\ \end{align} \right)}$-7, 这与p$ \sum\limits_{\mathit{i}=1}^{\mathit{n}\text{+2}}{\left( \begin{align} &\mathit{r}\text{-1} \\ &\ \ \mathit{i} \\ \end{align} \right)}$-6矛盾.

(ⅲ) {4}, {5},…, {r-1}中至少有2个非Z中点的色集合,不妨设{4},{5}为非Z中点的色集合,由于p$ \sum\limits_{\mathit{i}=1}^{\mathit{n}\text{+2}}{\left( \begin{align} &\mathit{r}\text{-1} \\ &\ \ \mathit{i} \\ \end{align} \right)}$-6, 除集合{1}, {2}, {3}, {1,2}, {4}, {5}外,{1,2, …, r-1}的其他1-子集,2-子集,…,8-子集全为Z中点的色集合,那么{1,6, …, r-1}⊆C(x),{2,6, …, r-1}⊆C(yj), 但是{1,3}, {1,4}, {1,5}, {3,4}, {3,5},{4,5}均为Z中点的色集合, 则每个C(yj)(j=1,2, …,6)是以下5个集合: Ar-1Ar-1\{1},Ar-1\{3},Ar-1\{4},Ar-1\{5},矛盾.引理得证.

引理4  (ⅰ) 当k≥9, p$ \sum\limits_{\mathit{i}=1}^{\text{8}}{\left( \begin{align} &\mathit{k}\text{-1} \\ &\ \ \mathit{i} \\ \end{align} \right)}$-6时,K1,6,p无(k-1)-GVDTC;

(ⅱ) 当5≤k≤8, p=$ \sum\limits_{\mathit{i}=1}^{\mathit{k}}{\left( \begin{align} &\mathit{k} \\ &\mathit{i} \\ \end{align} \right)}$-12时,K1,6,pk-GVDTC.

证明  (ⅰ) 假定K1,6,p有(k-1)-GVDTC g.若某个1-子集{a}(a∈{1,2, …, k-1})是XY中某点的色集合.则Z中每个点的色集合中含a.而Ak-1中含a的2-子集,3-子集,…, 8-子集,共$ \left( \begin{array}{l} \mathit{k}\text{-2} \\ \ \ \text{1} \\ \end{array} \right)\text{+}\left( \begin{array}{l} \mathit{k}\text{-2} \\ \ \ \text{2} \\ \end{array} \right)\text{+}\cdots \text{+}\left( \begin{array}{l} \mathit{k}\text{-2} \\ \ \ \text{7} \\ \end{array} \right)$个,不能区别Z中诸顶点(因为当k≥9时,有$ \left( \begin{array}{l} \mathit{k}\text{-2} \\ \ \ \text{1} \\ \end{array} \right)\text{+}\left( \begin{array}{l} \mathit{k}\text{-2} \\ \ \ \text{2} \\ \end{array} \right)\text{+}\cdots \text{+}\left( \begin{array}{l} \mathit{k}\text{-2} \\ \ \ \text{7} \\ \end{array} \right)$p), 从而导致矛盾.因此1-子集非XY中任一点的色集合.

当至少有6个Ak-1的1-子集非Z中任意点的色集合时,p$ \sum\limits_{\mathit{i}=1}^{\text{8}}{\left( \begin{align} &\mathit{k}\text{-1} \\ &\ \ \mathit{i} \\ \end{align} \right)}$-6, 矛盾.

当至多有5个Ak-1的1-子集为非Z中任意点的色集合时,不妨设{6}, {7}, …, {k-1}均为Z中点的色集合,那么C(x)∩C(yj)⊇{6,7, …, k-1}, 这时{1,2,3,4,5}的子集$ \overline{\mathit{C}\left( \mathit{x} \right)}, \ \overline{\mathit{C}\left( {{\mathit{y}}_{\text{1}}} \right)}, \cdots , \overline{\mathit{C}\left( {{\mathit{y}}_{6}} \right)}$(这7个子集互不相同,且其中至多有1个是空集)均为非Z中点的色集合,从而p$ \sum\limits_{\mathit{i}=1}^{5}{\left( \begin{align} &\mathit{k}\text{-1} \\ &\ \ \mathit{i} \\ \end{align} \right)} $-6, 矛盾.

(ⅱ) 假定K1,6,p存在k-GVDTC g, 若某个1-子集{a}(a∈{1,2, …, k})是XY中某点的色集合.则Z中每个点的色集合中含a, 而Ak中含a的2-子集,3-子集,…,8-子集,只有$ \left( \begin{array}{l} \mathit{k}\text{-1} \\ \ \ \text{1} \\ \end{array} \right)\text{+}\left( \begin{array}{l} \mathit{k}\text{-1} \\ \ \ \text{2} \\ \end{array} \right)\text{+}\cdots \text{+}\left( \begin{array}{l} \mathit{k}\text{-1} \\ \ \ \text{7} \\ \end{array} \right)$个,不能区别Z中诸顶点(因为当5≤k≤8时,有$ \left( \begin{array}{l} \mathit{k}\text{-1} \\ \ \ \text{1} \\ \end{array} \right)\text{+}\left( \begin{array}{l} \mathit{k}\text{-1} \\ \ \ \text{2} \\ \end{array} \right)\text{+}\cdots \text{+}\left( \begin{array}{l} \mathit{k}\text{-1} \\ \ \ \text{7} \\ \end{array} \right)$p,即15<19,31<51,63<114,126<243), 导致矛盾.因此1-子集非XY中任一点的色集合.

当某个1-子集是Z中某一点的色集合时,C(x), C(y1), …, C(y6), $ \overline{\mathit{C}\left( \mathit{x} \right)}, \ \overline{\mathit{C}\left( {{\mathit{y}}_{\text{1}}} \right)}, \cdots , \overline{\mathit{C}\left( {{\mathit{y}}_{6}} \right)}$(这14个子集彼此不同,且其中最多有1个是空集)均非Z中点的色集合,那么p$ \sum\limits_{\mathit{i}=1}^{\mathit{k}}{\left( \begin{align} &\mathit{k} \\ &\mathit{i} \\ \end{align} \right)}$-13, 矛盾.

当任意一个1-子集均非Z中点的色集合时,任意1-子集非K1,6,p中任意一点的色集合.当k≥6时,p+7≤$ \sum\limits_{\mathit{i}=1}^{\mathit{k}}{\left( \begin{align} &\mathit{k} \\ &\mathit{i} \\ \end{align} \right)}$-k, 即p$ \sum\limits_{\mathit{i}=1}^{\mathit{k}}{\left( \begin{align} &\mathit{k} \\ &\mathit{i} \\ \end{align} \right)}$-13, 矛盾.

下设k=5, 在K1,6,19的5-GVDTC下,{1,2,3,4,5}的所有2-子集,3-子集,4-子集,5-子集恰好构成K1,6,19的全体顶点的色集合.每个2-子集及其补集不属于不同部的2个顶点的色集合,每个2-子集及其补集只能同时是Y中点的色集合或同时都是Z中点的色集合.当然有某个2-子集是Z中点的色集合.不妨设{1,2}∈{C(z)|zZ}, 那么{3,4}, {3,5}, {4,5}∈{C(z)|zZ},进而{1,5}, {2,5}, {1,4}, {2,4}, {1,3}, {2,3}∈{C(z)|zZ}, 从而10个2-子集及其补集都必须是Z中点的色集合,但Z中仅有19个顶点,矛盾.

引理5  当l≥11, 且$ \sum\limits_{\mathit{i}=1}^{8}{\left( \begin{array}{l} \mathit{l}\text{-} \mathit{l}\\ \ \ \mathit{i} \\ \end{array} \right)}\text{-}7<\mathit{p}\le \sum\limits_{\mathit{i}\text{=1}}^{\text{8}}{\left( \begin{array}{l} \mathit{l} \\ \mathit{i} \\ \end{array} \right)}-\text{7}$时,K1,6,p存在l-VDIETC.

证明  为给出K1,6,pl-IE-全染色,先对K1,6,p的每个顶点对应Al的一个子集,令D(y1)=AlD(y2)=Al\{1}, D(y3)=Al\{3}, D(y4)=Al\{4}, D(y5)=Al\{5}, D(y6)=Al\{6}, D(x)=Al\{2},D(zi)={i+6},i=1,2, …, l-6, D(zl-5)={1,3}, D(zl-4)={2,3}, D(zl-3)={3,4}, D(zl-2)={4,5}, D(zl-1)={5,6}, D(zl)={6,7}.将Al的除{1,2},{1,3},{2,3},{3,4},{4,5}, {5,6}, {6,7}外的其余2-子集,3-子集,…,8-子集排成一个序列$ \mathscr{S}_2$, 则$ \mathscr{S}_2$$ \left( \begin{align} &\mathit{l} \\ &\text{2} \\ \end{align} \right)$+$ \left( \begin{align} &\mathit{l} \\ &\text{3} \\ \end{align} \right)$+…+$ \left( \begin{align} &\mathit{l} \\ &\text{8} \\ \end{align} \right)$ -7项.令D(zl+1), D(zl+2), …, D(zp)是$ \mathscr{S}_2$中的第1,2,…,p-l个项.这是可行的,因为p-l$ \left( \begin{align} &\mathit{l} \\ &\text{2} \\ \end{align} \right)$+$ \left( \begin{align} &\mathit{l} \\ &\text{3} \\ \end{align} \right)$+…+$ \left( \begin{align} &\mathit{l} \\ &\text{8} \\ \end{align} \right)$-7,p$ \sum\limits_{\mathit{i}\text{=1}}^{\text{8}}{\left( \begin{align} &\mathit{l} \\ &\mathit{i} \\ \end{align} \right)}-\text{7}$.

下面给出K1,6,p的一个l-IE-全染色f.令f(x)=1, f(yj)=2, j=1,2, …,6;用max D(zi)染点zii=1,2, …, p.而zi的关联边均染以i+6, i=1,2, …, l-6.对|D(zi)|=2, 用min[D(x)∩D(zi)]染边xzi,min[D(yj)∩D(zi)]染边yjzi, j=1,2, …,6;对|D(zi)|=3, 用min[D(x)∩D(zi)]染边xzi, min[(D(yj)∩D(zi))\{f(xzi)}]染边yjzi, j=1,2, …,6;对|D(zi)|=4, 用min[D(x)∩D(zi)]染边xzi, min[(D(y1)∩D(zi))\{f(xzi)}]染边y1zi, min[(D(yj)∩D(zi))\{f(xzi), f(y1zi)}]染边yjzi, j=2, 3, …,6;对|D(zi)|=s′(5≤s′≤8), 用min[D(x)∩D(zi)]染边xzi, min[(D(y1)∩D(zi))\{f(xzi)}]染边y1zi, …, min[(D(yj)∩D(zi))\{f(xzi), f(y1zi), …, f(yj-1zi)}]染边yjzi, j=2, 3, …, s′-2;min[D(yj)∩D(zi)]染边yjzi, j=s′-1, s′, …,6;min[D(x)∩D(yj)]染边xyj, j=1, 2, …,6.

最后得到K1,6,pl-IE全染色f是点可区别的,因为对∀vV(K1,6,p), 均有C(v)=D(v).

2 主要结果及其证明

定理1  (ⅰ) χvtie(K1,5,p)=

$ \left\{ \begin{array}{l} 5, \ \ \ \ 6\le \mathit{p}\le 19, \\ 6, \ \ \ \ 20\le \mathit{p}\le 51, \\ 7, \ \ \ \ 52\le \mathit{p}\le 115, \\ 8, \ \ \ \ 116\le \mathit{p}\le 243, \\ 9, \ \ \ \ 244\le \mathit{p}\le 495, \\ \mathit{k}\text{, }\ \ \ \ \sum\limits_{\mathit{i}=1}^{7}{\left( \begin{array}{l} \mathit{k}\text{-1} \\ \ \ \mathit{i} \\ \end{array} \right)}\text{-}6<\mathit{p}\le \sum\limits_{\mathit{i}\text{=1}}^{\text{7}}{\left( \begin{array}{l} \mathit{k} \\ \mathit{i} \\ \end{array} \right)}-\text{6, }\mathit{k}\ge \text{10}\text{.} \\ \end{array} \right. $

(ⅱ) χgvt(K1,5,p)=

$ \left\{ \begin{array}{l} 5, \ \ \ \ 5\le \mathit{p}\le 20, \\ 6, \ \ \ \ 21\le \mathit{p}\le 52, \\ 7, \ \ \ \ 53\le \mathit{p}\le 116, \\ 8, \ \ \ \ 117\le \mathit{p}\le 244, \\ 9, \ \ \ \ 245\le \mathit{p}\le 496, \\ \mathit{k}\text{, }\ \ \ \ \sum\limits_{\mathit{i}=1}^{7}{\left( \begin{array}{l} \mathit{k}\text{-1} \\ \ \ \mathit{i} \\ \end{array} \right)}\text{-}5<\mathit{p}\le \sum\limits_{\mathit{i}\text{=1}}^{\text{7}}{\left( \begin{array}{l} \mathit{k} \\ \mathit{i} \\ \end{array} \right)}-\text{5, }\mathit{k}\ge \text{10}\text{.} \\ \end{array} \right. $

证明  分以下几种情形进行讨论:

情形1  k≥10且p=$ \sum\limits_{\mathit{i}\text{=1}}^{\text{7}}{\left( \begin{align} &k \\ &\mathit{i} \\ \end{align} \right)}-\text{5}$.

在引理3中令r=k+1,则此时K1,5,pk-VDIETC.然而K1,5,p存在k-GVDTC,构造如下:令D(x)=AkD(y1)=Ak\{1},D(y2)=Ak\{2},D(y3)=Ak\{3},D(y4)=Ak\{4},D(y5)=Ak\{5},D(zi)={i+5}, i=1,2, …, k-5,D(zk-4)={1,2},D(zk-3)={2,3}, D(zk-2)={3,4}, D(zk-1)= {4,5}, D(zk)={5,6}.将除{1,2}, {2,3}, {3,4}, {4,5}, {5,6}外的Ak的2-子集,3-子集,…,7-子集排成一个序列$ \mathscr{S}_3$,有$ \left( \begin{array} {l} \mathit{k} \\ \text{2} \\ \end{array} \right)+\left( \begin{array}{l} \mathit{k} \\ \text{3} \\ \end{array} \right)+\cdots +\left( \begin{array}{l} \mathit{k} \\ \text{7} \\ \end{array} \right)$-5项,使D(zk+1), D(zk+2), …, D(zp)依次为$ \mathscr{S}_3$中的第1,2, …, p-k项.这是可行的,因为p-k=$ \left( \begin{array}{l} \mathit{k} \\ \text{2} \\ \end{array} \right)+\left( \begin{array}{l} \mathit{k} \\ \text{3} \\ \end{array} \right)+\cdots +\left( \begin{array}{l} \mathit{k} \\ \text{7} \\ \end{array} \right)$-5,即$ \mathit{p} = \sum\limits_{\mathit{i}{\rm{ = 1}}}^7 {\left( \begin{array}{l} \mathit{k}\\ \mathit{i} \end{array} \right)} - {\rm{5}}$.

下面给出K1,5,pk-GVDTC f.令f(x)=f(yj)=k, j=1,2, …,5;用max D(zi)染点zii=1,2, …, p.而zi的关联边均染以i+5, i=1,2, …, k-5.对|D(zi)|=2, 用min[D(x)∩D(zi)]染边xzi,min[D(yj)∩D(zi)]染边yjzi, j=1,2, …,5;对|D(zi)|=3, 用min[D(x)∩D(zi)]染边xzi, 用min[(D(yj)∩D(zi))\{f(xzi)}]染边yjzi, j=1,2, …,5;对|D(zi)|=4, 用min[D(x)∩D(zi)]染边xzi, 用min[(D(y1)∩D(zi))\{f(xzi)}]染边y1zi, 用min[(D(yj)∩D(zi))\{f(xzi), f(y1zi)}]染边yjzi, j=2, 3, …,5;对|D(zi)|=q(5≤q≤7), 用min[D(x)∩D(zi)]染边xzi, 用min[(D(y1)∩D(zi))\{f(xzi)}]染边y1zi, …, 用min[(D(yj)∩D(zi))\{f(xzi), f(y1zi), …, f(yj-1zi)}]染边yjzi, j=2, 3, …, q-2;用min[D(yj)∩D(zi)]染边yjzi, j=q-1, q, …,5;用min[D(x)∩D(yj)]染边xyj, j=1, 2, …,5.

情形2  k≥10且$ \sum\limits_{\mathit{i}=1}^{7}{\left( \begin{align} &\mathit{k}\text{-1} \\ &\ \ \mathit{i} \\ \end{align} \right)}\text{-}5$p$ \sum\limits_{\mathit{i}=1}^{7}{\left( \begin{align} &\mathit{k} \\ & \mathit{i} \\ \end{align} \right)}$-6.

此时,由引理1(ⅰ)可知,K1,5,p无(k-1)-GVDTC.同时,在引理2中令l=k,可得K1,5,p存在k-VDIETC.又由命题1得kχgvt(K1,5,p)≤χvtie(K1,5,p)=k, 即χgvt(K1,5,p)=χvtie(K1,5,p)=k.

情形3  当p=496时,在引理1(ⅰ)中令k=9, 得K1,5,496无8-GVDTC.而K1,5,496的10-VDIETC可由引理2中的染色规则得到.

情形4  245≤p≤495.先证K1,5,p无8-GVDTC.假如K1,5,245有8-GVDTC,若A8XY中某点的色集合,则XY中其余点的色集合及其补集均非Z中点的色集合,故p$ \sum\limits_{\mathit{i}\text{=1}}^{\text{7}}{\left( \begin{align} &\text{8} \\ &\mathit{i} \\ \end{align} \right)}$-10=244, 矛盾.若A8不是XY中任一点的色集合,XY中所有点的色集合及其补集均非Z中点的色集合,则p$ \sum\limits_{\mathit{i}\text{=1}}^{\text{7}}{\left( \begin{align} &\text{8} \\ &\mathit{i} \\ \end{align} \right)}$-12=242,矛盾.

同时K1,5,495的9-VDIETC的构造类似于引理2,不再详述.

情形5  K1,5,244无8-VDIETC.只要在引理3的证明过程中令r=9便可得.但其有9-VDIETC(可由K1,5,494的9-VDIETC限制在{x, y1, …, y5, z1, …, z244}上得到).同时, 在引理1(ⅰ)中令k=8,可知K1,5,244无7-GVDTC, 其8-GVDTC可依照情形1构造.

情形6  117≤p≤243.先证K1,5,p无7-GVDTC.在引理1(ⅱ)中令k=7, 可知K1,5,117无7-GVDTC.但K1,5,p有8-VDIETC, K1,5,243的8-VDIETC的构造类似于引理2.

情形7  K1,5,116无7-VDIETC.只要在引理3的证明过程中令r=8便可得.但它有8-VDIETC,可通过将K1,5,243的8-VDIETC限制在{x, y1, …, y5, z1, …, z116}上得到.同时,在引理1(ⅱ)中令k=6,可知K1,5,116无6-GVDTC.而7-GVDTC可依照情形1构造.

情形8  53≤p≤115.先证K1,5,p无6-GVDTC.在引理1(ⅱ)中令k=6, 可知K1,5,53无6-GVDTC.但K1,5,p有7-VDIETC, K1,5,115的7-VDIETC的构造类似于引理2.

情形9  K1,5,52无6-VDIETC.只要在引理3的证明过程中令r=7便可得.但其有7-VDIETC,可通过将K1,5,115的7-VDIETC限制在{x, y1, …, y5, z1, …, z52}上得到.同时,在引理1(ⅱ)中令k=5,可知K1,5,52无5-GVDTC, 有6-GVDTC, 可依照情形1构造.

情形10  21≤p≤51.先证K1,5,p无5-GVDTC.在引理1(ⅱ)中令k=5, 可知K1,5,21无5-GVDTC.但K1,5,p有6-VDIETC, K1,5,51的6-VDIETC构造类似于引理2.

情形11  K1,5,20无5-VDIETC.只要在引理3的证明过程中令r=7便可得.但其有6-VDIETC,可通过将K1,5,51的6-VDIETC限制在{x, y1, …, y5, z1, …, z20}上得到.同时,K1,5,20无4-GVDTC(否则,{1,2,3,4}的非空子集不能区分诸顶点),但有5-GVDTC, 可依照情形1构造.

情形12  6≤p≤19.K1,5,p无4-GVDTC(否则,XY中所有点的色集合及其补集(至多有1个是空集)均非Z中点的色集合,即p$ \sum\limits_{\mathit{i}\text{=1}}^{\text{4}}{\left(\begin{align} & \text{4} \\ & \mathit{i} \\ \end{align} \right)}$-10=5, 矛盾).但K1,5,p有5-VDIETC,K1,5,19的5-VDIETC构造类似于引理2.

定理2  (ⅰ) χvtie(K1,6,p)=

$ \left\{ \begin{array}{l} 5, \ \ \ \ 6\le \mathit{p}\le 17, \\ 6, \ \ \ \ 18\le \mathit{p}\le 49, \\ 7, \ \ \ \ 50\le \mathit{p}\le 113, \\ 8, \ \ \ \ 114\le \mathit{p}\le 241, \\ 9, \ \ \ \ 242\le \mathit{p}\le 497, \\ 10, \ \ \ \ 498\le \mathit{p}\le 1\ 005, \\ \mathit{k}\text{, }\ \ \ \ \sum\limits_{\mathit{i}=1}^{8}{\left( \begin{array}{l} \mathit{k}\text{-1} \\ \ \ \mathit{i} \\ \end{array} \right)}\text{-}7<\mathit{p}\le \sum\limits_{\mathit{i}\text{=1}}^{\text{8}}{\left( \begin{array}{l} \mathit{k} \\ \mathit{i} \\ \end{array} \right)}-\text{7, }\ \ \mathit{k}\ge \text{11}\text{.} \\ \end{array} \right. $

(ⅱ) χgvt(K1,6,p)=

$ \left\{ \begin{array}{l} 5, \ \ \ \ 6\le \mathit{p}\le 18, \\ 6, \ \ \ \ 19\le \mathit{p}\le 50, \\ 7, \ \ \ \ 51\le \mathit{p}\le 114, \\ 8, \ \ \ \ 115\le \mathit{p}\le 242, \\ 9, \ \ \ \ 243\le \mathit{p}\le 498, \\ 10, \ \ \ \ 499\le \mathit{p}\le 1\ 006, \\ \mathit{k}\text{, }\ \ \ \ \sum\limits_{\mathit{i}=1}^{8}{\left( \begin{array}{l} \mathit{k}\text{-1} \\ \ \ \mathit{i} \\ \end{array} \right)}\text{-}6<\mathit{p}\le \sum\limits_{\mathit{i}\text{=1}}^{\text{8}}{\left( \begin{array}{l} \mathit{k} \\ \mathit{i} \\ \end{array} \right)}-\text{6, }\ \ \mathit{k}\ge \text{11}\text{.} \\ \end{array} \right. $

证明  分以下几种情形讨论:

情形1  当k≥11且p=$ \sum\limits_{\mathit{i}=1}^{\text{8}}{\left( \begin{align} &\mathit{k}\text{-1} \\ &\ \ \mathit{i} \\ \end{align} \right)}$-6时,K1,6,pk-VDIETC(在引理3中,令r=k+1).但可按以下方式构造其k-GVDTC.

D(x)=AkD(y1)=Ak\{1},D(y2)= Ak\{2},D(y3)=Ak\{3},D(y4)=Ak\{4},D(y5)= Ak\{5}, D(y6)=Ak\{6},D(zi)={i+6}, i=1,2, …, k-6, D(zk-5)={1,2},D(zk-4)={2,3}, D(zk-3)={3,4}, D(zk-2)={4,5}, D(zk-1)={5,6}, D(zk)={6,7}.将除{1,2}, {2,3}, {3,4}, {4,5},{5,6}, {6,7}外的Ak的2-子集,3-子集,…,8-子集排成一个序列$ \mathscr{S}_4$, 有$ \left( \begin{array} {l} \mathit{k} \\ \text{2} \\ \end{array} \right)+\left( \begin{array}{l} \mathit{k} \\ \text{3} \\ \end{array} \right)+\cdots +\left( \begin{array}{l} \mathit{k} \\ \text{8} \\ \end{array} \right)$-6项,使D(zk+1),D(zk+2), …, D(zp)依次为$ \mathscr{S}_4$中的第1,2, …, p-k项.这是可行的,因为p-k= $ \left( \begin{array}{l} \mathit{k} \\ \text{2} \\ \end{array} \right)+\left( \begin{array}{l} \mathit{k} \\ \text{3} \\ \end{array} \right)+\cdots +\left( \begin{array}{l} \mathit{k} \\ \text{8} \\ \end{array} \right)$-6,即p=$ \sum\limits_{\mathit{i}\text{=1}}^{\text{8}}{\left( \begin{align} &\mathit{k} \\ &\mathit{i} \\ \end{align} \right)}$-6.

下面给出K1,6,pk-GVDTC f.令f(x)=f(yj)=k, j=1,2, …,6;用max D(zi)染点zii=1,2, …, p.而zi的关联边均染以i+6, i=1,2, …, k-6.对|D(zi)|=2, 用min[D(x)∩D(zi)]染边xzi,用min[D(yj)∩D(zi)]染边yjzi, j=1,2, …,6;对|D(zi)|=3, 用min[D(x)∩D(zi)]染边xzi,min[(D(yj)∩D(zi))\{f(xzi)}]染边yjzi, j=1,2, …,6;对|D(zi)|=4, 用min[D(x)∩D(zi)]染边xzi,用min[(D(y1)∩D(zi))\{f(xzi)}]染边y1zi, 用min[(D(yj)∩D(zi))\{f(xzi), f(y1zi)}]染边yjzi, j=2, 3,…,6;对|D(zi)|=q′(5≤q′≤8), 用min[D(x)∩D(zi)]染边xzi, 用min[(D(y1)∩D(zi))\{f(xzi)}]染边y1zi, …,用min[(D(yj)∩D(zi))\{f(xzi), f(y1zi), …, f(yj-1zi)}]染边yjzi, j=2, 3,…, q′-2;用min[D(yj)∩D(zi)]染边yjzi, j=q′-1, q, …,6;用min[D(x)∩D(yj)]染边xyj, j=1, 2, …,6.

情形2  当p=1 006时,在引理4(ⅰ)中令k=10, 得K1,6,504无9-GVDTC, 那么K1,6,1 006无9-GVDTC.

K1,6,p有10-VDIETC, 其染色类似于引理5,不再赘述.

情形3  当499≤p≤1 005时,K1,6,p无9-GVDTC, 只需证K1,6,499无9-GVDTC, 若K1,6,499有9-GVDTC g.当A9XY中某点的色集合时,XY中其余点的色集合及其补集均非Z中点的色集合,则p$ \sum\limits_{\mathit{i}\text{=1}}^{\text{8}}{\left( \begin{align} &\text{9} \\ &\mathit{i} \\ \end{align} \right)}$-12=498;当A9为非XY中任一点的色集合时,XY中所有点的色集合及其补集均非Z中点的色集合,则p$ \sum\limits_{\mathit{i}\text{=1}}^{\text{8}}{\left( \begin{align} &\text{9} \\ &\mathit{i} \\ \end{align} \right)}$-14=496,矛盾.而K1,6,p有10-VDIETC,可依照引理5构造K1,6,1 005的10-VDIETC.

情形4  K1,6,498无9-VDIETC.只要在引理3的证明过程中令r=10便可得.但其有10-VDIETC, 可通过将K1,6,1 005的10-VDIETC限制在{x, y1, …, y6, z1, …, z498}上得到.同时,在引理4(ⅱ)中令k=8,可知K1,6,498无8-GVDTC, 有9-GVDTC, 可依照情形1构造.

情形5  当243≤p≤497时,先证K1,6,p无8-GVDTC.在引理4(ⅱ)中令k=8,可知K1,5,243无8-GVDTC.但K1,6,p有9-VDIETC, K1,6,497的9-VDIETC构造类似于引理5.

情形6  K1,6,242无8-VDIETC.只要在引理3的证明过程中令r=9则可得.但其有9-VDIETC,可通过将K1,6,497的9-VDIETC限制在{x, y1, …, y6, z1, …, z242}上得到.同时,在引理4(ⅱ)中令k=7,可知K1,6,242无7-GVDTC, 有8-GVDTC, 可依照情形1构造.

情形7  当115≤p≤241时,先证K1,6,p无7-GVDTC.在引理4(ⅱ)中令k=7,可知K1,6,115无7-GVDTC.但K1,6,p有8-VDIETC, K1,6,241的8-VDIETC构造类似于引理5.

情形8  K1,6,114无7-VDIETC.只要在引理3的证明过程中令r=8便可得.但其有8-VDIETC,可通过将K1,6,241的8-VDIETC限制在{x, y1, …, y6, z1, …, z114}上得到.同时,在引理4(ⅱ)中令k=6,可知K1,6,114无6-GVDTC, 有7-GVDTC, 可依照情形1构造.

情形9  当51≤p≤113时,在引理4(ⅱ)中令k=6, 可知K1,6,51无6-GVDTC.但K1,6,p有7-VDIETC,K1,6,113的7-VDIETC构造类似于引理5.

情形10  K1,6,50无6-VDIETC.只要在引理3的证明过程中令r=7便可得.但其有7-VDIETC,可通过将K1,6,113的7-VDIETC限制在{x, y1, …, y6, z1, …, z50}上得到.同时,在引理4(ⅱ)中令k=5,可知K1,6,50无5-GVDTC, 有6-GVDTC, 可依照情形1构造.

情形11  当19≤p≤49时,在引理4(ⅱ)中令k=5, 可知K1,6,19无5-GVDTC.但K1,6,p有6-VDIETC,K1,6,49的6-VDIETC构造类似于引理5.

情形12  当p=18时,K1,6,18无5-VDIETC.只要在引理3的证明过程中令r=6便可得.但其有6-VDIETC,可通过将K1,6,49的6-VDIETC限制在{x, y1, …, y6, z1, …, z18}上得到.同时易证K1,6,18无4-GVDTC,而有5-GVDTC.将{1,2,…,5}的所有5-子集,4-子集,3-子集,2-子集依次分配给XYZ中点的色集合,可得其染色(25-1-5>p+7).

情形13  当6≤p≤17时,类似引理4(ⅰ)的证明,1-子集非K1,6,p中任一点的色集合,若K1,6,p有4-GVDTC,则{1,2,3,4}的所有2-子集, 3-子集,4-子集均为K1,6,p中点的色集合,而$ \left( \begin{array}{l} \text{4} \\ \text{4} \\ \end{array} \right)+\left( \begin{array}{l} \text{4} \\ \text{3} \\ \end{array} \right)+\left( \begin{array}{l} \text{4} \\ \text{2} \\ \end{array} \right)$p+7, 矛盾.但K1,6,p有5-VDIETC, 将除去{1,2}的{1,2,…,5}的所有5-子集,4-子集,3-子集,2-子集依次分配给XYZ中点的色集合,可得其染色(25-1-5-1>p+7).

对于一般的完全三部图的VDIETC与GVDTC,笔者正在进一步探索中.

参考文献
[1] HARARY F, PLANTHOLT M. The point-distinguishing chromatic index[C]//HARARY F, MAY-BEE J S. Graphs and Application. New York: Wiley Interscience, 1985: 147-162.
[2] HORŇÁK M, SOTÁK R. The fifth jump of the point-distinguishing chromatic index of Kn, n[J]. Ars Combinatoria, 1996, 42: 233–242.
[3] HORŇÁK M, SOTÁK R. Localization jumps of the point-distinguishing chromatic index of Kn, n[J]. Discuss Math Graph Theory, 1997, 17: 243–251.
[4] HORŇÁK M, ZAGAGLIA S N. On the point-distinguishing chromatic index of Km, n[J]. Ars Combinatoria, 2006, 80: 75–85.
[5] ZAGAGLIA SALVI N. On the value of the point-distinguishing chromatic index of Kn, n[J]. Ars Combinatoria, 1990, 29(B): 235–244.
[6] CHEN X E. Point-distinguishing chromatic index of the union of paths[J]. Czechoslovak Mathematical Journal, 2014, 64(3): 620–640.
[7] CHEN X E, GAO Y P, YAO B. Vertex -distinguishing IE-total colorings of complete bipartite graphs Km, n (m < n)[J]. Discussiones Mathematicae Graph Theory, 2013, 33: 289–306.
[8] LIU C J, ZHU E Q. General vertex-distinguishing total coloring of graphs[J]. Journal of Applied Mathematics, 2014: Article ID 849748.