文章快速检索     高级检索
  浙江大学学报(理学版)  2018, Vol. 45 Issue (4): 427-428, 460  DOI:10.3785/j.issn.1008-9497.2018.04.009
0

引用本文 [复制中英文]

贾秀敏. 两共焦抛物导体柱板间的电势和电场[J]. 浙江大学学报(理学版), 2018, 45(4): 427-428, 460. DOI: 10.3785/j.issn.1008-9497.2018.04.009.
[复制中文]
JIA Xiumin. Electric potential and electric field between two confocal parabolic conductor plates[J]. Journal of Zhejiang University(Science Edition), 2018, 45(4): 427-428, 460. DOI: 10.3785/j.issn.1008-9497.2018.04.009.
[复制英文]

基金项目

河北科技大学理工学院教学研究项目(ZX2016Z08)

作者简介

贾秀敏(1966-), 女, ORCID:http://orcid.org/0000-0001-5886-7238, 女, 副教授, 主要从事普通物理的教学与研究工作

文章历史

收稿日期:2017-03-03
两共焦抛物导体柱板间的电势和电场
贾秀敏     
河北科技大学 理学院, 河北 石家庄 050018
摘要: 利用导体曲面函数,将求解拉普拉斯方程转变为积分运算,从而得到了在无电荷区域普遍成立的电势表达式,再通过边界条件导出共焦抛物导体柱板间的电场分布,并给出了电场线方程.
关键词: 抛物柱板    电势    电场强度    
Electric potential and electric field between two confocal parabolic conductor plates
JIA Xiumin     
College of Sciences, Hebei University of Science and Technology, Shijiazhuang 050018, Hebei Province, China
Abstract: Using the conductor surface function, the Laplace equation is transformed into the integral operation, and the potential expression is obtained which is generally established in the no charge region. Then the electric field distribution between two confocal parabolic conductor plates is calculated by the boundary condition, and equations of the electric field line is given.
Key words: parabolic plate    electric potential    electric field intensity    

图 1所示,由于长直共轴共焦抛物导体柱板在空间产生的电场与轴无关,是垂直于轴的横截面上的二维场问题.文献[1-3]分别采用抛物柱坐标、高斯定理和复势函数法对此问题进行了研究;文献[4]采用不同坐标系的度规系数简化求解拉普拉斯方程.本文引入导体曲面函数,将解偏微分方程问题转化为一般的积分运算,简便直观地导出了共轴共焦抛物导体柱板间的电场分布.

图 1 共焦共轴抛物柱板 Fig. 1 Two confocal parabolic conductor plates
1 解拉普拉斯方程

f(x, y, z)为具有连续一、二阶偏导数的函数,c为参数,则

$ f\left( {x, y, z} \right) = c $ (1)

表示一空间曲面族[5].若任取2个满足f(x, y, z)的薄导体曲面并带电,则曲面间的电势u满足拉普拉斯方程,而该电势在薄导体曲面上的取值为常量,说明电势uf(x, y, z)的函数.

因为

$ \nabla u = \frac{{{\text{d}}u}}{{{\text{d}}f}}\frac{{\partial f}}{{\partial x}}{{\bf{e}}_{\bf{x}}} + \frac{{{\text{d}}u}}{{{\text{d}}f}}\frac{{\partial f}}{{\partial y}}{{\bf{e}}_{\bf{y}}} + \frac{{{\text{d}}u}}{{{\text{d}}f}}\frac{{\partial f}}{{\partial z}}{{\bf{e}}_{\bf{z}}}, $

所以

$ \begin{gathered} {\nabla ^2}u = \frac{\partial }{{\partial x}}\left( {\frac{{{\text{d}}u}}{{{\text{d}}f}}\frac{{\partial f}}{{\partial x}}} \right) + \frac{\partial }{{\partial y}}\left( {\frac{{{\text{d}}u}}{{{\text{d}}f}}\frac{{\partial f}}{{\partial y}}} \right) + \hfill \\ \frac{\partial }{{\partial z}}\left( {\frac{{{\text{d}}u}}{{{\text{d}}f}}\frac{{\partial f}}{{\partial z}}} \right) = \frac{{{{\text{d}}^2}u}}{{{\text{d}}{f^2}}}{\left| {\nabla f} \right|^2} + \frac{{{\text{d}}u}}{{{\text{d}}f}}{\nabla ^2}f. \hfill \\ \end{gathered} $

$u' = \frac{{{\text{d}}u}}{{{\text{d}}f}}$,由${\nabla ^2}u = 0$, 整理得

$ \frac{{{\text{d}}u'}}{{u'}} = \frac{{{\nabla ^2}f}}{{{{\left| {\nabla f} \right|}^2}}}{\text{d}}f. $

积分2次得曲面间的电势

$ u = A\int {{{\text{e}}^{-\frac{{{\nabla ^2}f}}{{{{\left| {\nabla f} \right|}^2}}}}}{\text{d}}f + B, } $ (2)

其中,AB为积分常数.

2 抛物板间的电势分布

图 1为具有共同焦点(0, 0)的两抛物板l1l2,对应的方程为$c =-y + \sqrt {{x^2} + {y^2}} $,即

$ f\left( {x, y} \right) = c =-y + \sqrt {{x^2} + {y^2}}, $ (3)

其中抛物板l1对应c=c1,电势为u1;抛物板l2对应c=c2,电势为u2,由于板间电势u满足拉普拉斯方程,故将相应参量代入式(2),即可计算抛物板间的电势.

$\frac{{\partial f}}{{\partial x}} = \frac{x}{{\sqrt {{x^2} + {y^2}} }}$$\frac{{{\partial ^2}f}}{{\partial {x^2}}} = \frac{{{y^2}}}{{{{\left( {{x^2} + {y^2}} \right)}^{\frac{3}{2}}}}}, $, $\frac{{\partial f}}{{\partial y}} =-1 + \frac{y}{{\sqrt {{x^2} + {y^2}} }}$, $\frac{{{\partial ^2}f}}{{\partial {y^2}}} = \frac{{{x^2}}}{{{{\left( {{x^2} + {y^2}} \right)}^{\frac{3}{2}}}}}$, 有${\nabla ^2}f = \frac{1}{{\sqrt {{x^2} + {y^2}} }}$, ${\left| {\nabla f} \right|^2} = 2\left( {1-\frac{y}{{\sqrt {{x^2} + {y^2}} }}} \right)$$-\int {\frac{{{\nabla ^2}f}}{{{{\left| {\nabla f} \right|}^2}}}{\text{d}}f} =-\int {\frac{1}{{2f}}{\text{d}}f} = \ln \frac{1}{{\sqrt f }}$,则

$ u = A\int {\frac{{{\text{d}}f}}{{\sqrt f }}} + B = 2A\sqrt f + B. $ (4)

下面由边界条件确定积分常数AB.将抛物柱板对应的u1, c1u2, c2分别代入式(4)有${u_1} = 2A\sqrt {{c_1}} + B, {u_2} = 2A\sqrt {{c_2}} + B$,整理得

$ A = \frac{{{u_2}-{u_1}}}{{2\left( {\sqrt {{c_2}}-\sqrt {{c_1}} } \right)}}, B = \frac{{{u_1}\sqrt {{c_2}}-{u_2}\sqrt {{c_1}} }}{{\sqrt {{c_2}} - \sqrt {{c_1}} }}, $

所以

$ \begin{gathered} u\left( {x, y} \right) = \frac{{{u_2}-{u_1}}}{{\sqrt {{c_2}}-\sqrt {{c_1}} }}\sqrt {-y + \sqrt {{x^2} + {y^2}} } + \hfill \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\frac{{{u_1}\sqrt {{c_2}} - {u_2}\sqrt {{c_1}} }}{{\sqrt {{c_2}} - \sqrt {{c_1}} }}, \hfill \\ \end{gathered} $ (5)

式(5)给出的两抛物导体柱板间的电势分布与文献[1]结果相同.

3 抛物板间的电场强度

$\mathit{\boldsymbol{E}} =-\nabla u$可得两导体抛物柱板间的电场强度分布:

$ \begin{gathered} \mathit{\boldsymbol{E}} =- \frac{{\partial u}}{{\partial x}}{\mathit{\boldsymbol{e}}_\mathit{\boldsymbol{x}}}- \frac{{\partial u}}{{\partial y}}{\mathit{\boldsymbol{e}}_\mathit{\boldsymbol{y}}} =- \frac{1}{2}\frac{{{u_2} - {u_1}}}{{\sqrt {{c_2}} - \sqrt {{c_1}} }} \times \hfill \\ \left[{\frac{{x{\mathit{\boldsymbol{e}}_x} + \left( {y-\sqrt {{x^2} + {y^2}} } \right){\mathit{\boldsymbol{e}}_y}}}{{\sqrt {{x^2} + {y^2}} \times \sqrt {-y + \sqrt {{x^2} + {y^2}} } }}} \right], \hfill \\ \end{gathered} $ (6)

由式(6)可得电场线满足微分方程:

$ \frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{{E_y}}}{{{E_x}}} = \frac{y}{x}-\sqrt {1 + {{\left( {\frac{y}{x}} \right)}^2}}, $ (7)

$t = \frac{y}{x}$,则dy=xdt+tdx, 代入式(7)整理得

$ \frac{{{\text{d}}t}}{{\sqrt {1 + {t^2}} }} =-\frac{{{\text{d}}x}}{x}, $

两边积分得$t + \sqrt {1 + {t^2}} = A{x^{-1}}, $

$ y + \sqrt {{x^2} + {y^2}} = A\left( {A为任意常数} \right), $ (8)

式(8)即为抛物柱板间的电场线方程.

由式(6)可知,柱板间电场强度大小为

$ E = = \frac{{\sqrt 2 }}{2} \times \frac{{{u_2}-{u_1}}}{{\sqrt {{c_2}}-\sqrt {{c_1}} }}{\left( {\frac{1}{{{x^2} + {y^2}}}} \right)^{\frac{1}{4}}}, $ (9)

故抛物板上电荷面密度为

$ \sigma = {\varepsilon _0}E = = \frac{{\sqrt 2 {\varepsilon _0}}}{2} \times \frac{{{u_2}-{u_1}}}{{\sqrt {{c_2}}-\sqrt {{c_1}} }}{\left( {\frac{1}{{{x^2} + {y^2}}}} \right)^{\frac{1}{4}}}, $ (10)

说明抛物导体板上的电荷分布是不均匀的,越靠近抛物柱弧顶,电荷密度越大,而在较远处,电荷密度几乎为0.

通过导体曲面函数,利用积分导出了共轴共焦的抛物导体柱板间的电场分布,并给出了导体板上的电荷分布情况.该方法为计算等势面规范的带电导体产生的电场提供了新思路,有利于对静电问题的研究.

参考文献
[1] 朱国斌, 陈钢, 陈梦姣. 用抛物柱坐标求解两共焦抛物板间的电势和电场[J]. 大学物理, 2011, 30(11): 56–57.
ZHU G B, CHEN G, CHEN M J. Distribution of electric potential between two charged confocal parabolic conductor plates by parabolic cylindrical coordinates[J]. College Physics, 2011, 30(11): 56–57. DOI:10.3969/j.issn.1000-0712.2011.11.016
[2] 郑民伟. 用高斯定理计算两共焦抛物柱板间的电场和电容[J]. 大学物理, 2015, 34(10): 20–22.
ZHENG M W. Calculation of two confocal parabolic cylinder plate between the electric field and capacitance using Gauss theorem[J]. College Physics, 2015, 34(10): 20–22.
[3] 郑民伟. 用复势函数法计算两共焦抛物柱板间的电场和电容[J]. 广州航海学院学报, 2016, 24(2): 18–20.
ZHENG M W. Using the complex potential function method to calculate the electric field between the two confocal parabolic column plate and capacitance[J]. Journal of Guangzhou Maritime Institute, 2016, 24(2): 18–20.
[4] 陈钢, 林焰清. 等值坐标带电板的电势分布[J]. 大学物理, 2010, 29(8): 31–32.
CHEN G, LIN Y Q. The electric potential of equivalent coordinate charged cylindrical shells or planes[J]. College Physics, 2010, 29(8): 31–32.
[5] 张之翔. 等势面族的条件及例子[J]. 大学物理, 2008, 27(6): 3–5.
ZHANG Z X. Conditions and examples of equipotential[J]. College Physics, 2008, 27(6): 3–5.