文章快速检索     高级检索
  浙江大学学报(理学版)  2018, Vol. 45 Issue (4): 413-415  DOI:10.3785/j.issn.1008-9497.2018.04.006
0

引用本文 [复制中英文]

邢峰, 邹广玉. φ-混合序列的随机中心极限定理[J]. 浙江大学学报(理学版), 2018, 45(4): 413-415. DOI: 10.3785/j.issn.1008-9497.2018.04.006.
[复制中文]
XING Feng, ZOU Guangyu. The random central limit theorem for φ-mixing sequence[J]. Journal of Zhejiang University(Science Edition), 2018, 45(4): 413-415. DOI: 10.3785/j.issn.1008-9497.2018.04.006.
[复制英文]

基金项目

国家自然科学基金资助项目(11401090);吉林省教育厅“十二五”科学技术研究项目(吉教科合字[2012]第399号)

作者简介

邢峰(1970-), ORCID: http://orcid.org/0000-0002-7566-5483, 男, 硕士, 副教授, 主要从事概率统计、应用数学研究, E-mail:xingfeng19700508@sohu.com

文章历史

收稿日期:2017-06-07
φ-混合序列的随机中心极限定理
邢峰 , 邹广玉     
长春工程学院 理学院, 吉林 长春 130012
摘要: 设{Xnn≥1}为严平稳的φ-混合序列,{Nnn≥1}为一列非负整值随机变量序列,且与{Xnn≥1}独立,随机部分和为${S_{{N_n}}} = \sum\limits_{i = 1}^{{N_n}} {{X_i}} $,在适当的假设条件下,利用φ混合序列的极限性质,证明了严平稳φ混合序列的随机中心极限定理,得到了${T_n} = \frac{{{S_{{N_n}}} - E{S_{{N_n}}}}}{{\sqrt {{\rm{Var(}}{S_{{N_n}}}{\rm{)}}} }}$依分布收敛于TZ1Z2),其中TZ1Z2)为Z1Z2的线性函数,Z1~N(0,1),Z2为{Nnn≥1}正则化后的极限分布.
关键词: φ-混合序列    随机和    随机中心极限定理    
The random central limit theorem for φ-mixing sequence
XING Feng, ZOU Guangyu     
School of Science, Changchun Institute of Technology, Changchun 130012, China
Abstract: Let {Xn, n ≥ 1} be a strictly stationary φ-mixing sequence, {Nn, n ≥ 1} be a sequence of nonnegative integer valued random variable. Note ${S_{{N_n}}} = \sum\limits_{i = 1}^{{N_n}} {{X_i}} $ be the random partial sums, we prove the random central limit theorem for strictly stationary φ-mixing sequence using the limit properties of φ-mixing sequence under some suitable conditions, and obtain that ${T_n} = \frac{{{S_{{N_n}}} - E{S_{{N_n}}}}}{{\sqrt {{\rm{Var(}}{S_{{N_n}}}{\rm{)}}} }}$ converges to T(Z1, Z2), where T(Z1, Z2) is the linear function of Z1 and Z2, Z1~N(0, 1), Z2 is the limit distribution after normalization of {Nn, n ≥ 1}.
Key words: φ-mixing sequence    random partial sums    random central limit theorem    
1 引言及主要结果

定义1 若

$ \begin{array}{l} \varphi \left( n \right) = \mathop {\sup }\limits_{k \ge 1} \mathop {\sup }\limits_{A \in \mathscr{F}_1^k,B \in \mathscr{F}_{k + n}^\infty ,P\left( A \right) > 0} \left| {P\left( {B\left| A \right.} \right) - P\left( B \right)} \right| \to 0,\\ \;\;\;\;\;\;\;\;\;\;\;n \to \infty , \end{array} $

其中Fab=σ(Xi, aib),则称随机序列{Xn, n≥1}是φ-混合的.这是混合条件中常见的一种, 具体应用和例子可参见文献[1].

定义2  若

$ Cov\left( {f\left( {{X_1},{X_2}, \cdots ,{X_n}} \right),g\left( {{X_1},{X_2}, \cdots ,{X_n}} \right)} \right) \ge 0, $

其中fg是任何2个使上式协方差存在且对每个变元均单调非降的函数,则称随机序列{Xk, 1≤kn}是相伴(associated)的.如果对任何n≥2, {X1, X2, …, Xn}都是相伴的,则随机序列{Xn, n≥1}是相伴的.

定义3  定义随机变量XY之间的Kolmogorov距离为

$ {d_K}\left( {X,Y} \right) = \mathop {\sup }\limits_{x \in R} \left| {P\left( {X \le x} \right) - P\left( {X \le x} \right)} \right|. $

IBRAGIMOV[2]给出了下列严平稳φ-混合序列的中心极限定理:

定理A  设{Xn, n≥1}为严平稳的φ-混合序列, 满足EX1=μ, 0<σ2=Var(X1)+$2\sum\limits_{j = 2}^\infty {{\rm{Cov}}({X_1}, {X_j}) < \infty, } \sum\limits_{n = 1}^\infty {{\varphi ^{1/2}}(n) < \infty } $, 那么

$ \frac{{{S_n} - n\mu }}{{\sigma \sqrt n }}\xrightarrow{d}{Z_1},n \to \infty , $ (1)

其中, ${S_n} = \sum\limits_{i = 1}^n {{X_i}} $为部分和, Z1~N(0, 1), Φ(·)为Z1的分布函数.

随机序列部分和的相关研究一直是概率极限理论研究的热点之一,它与很多实际问题密切相关,比如,保险公司在一定时间内的索赔可表示为随机部分和的形式,此外,金融数学、更新过程、证券、风险投资等领域中的问题也属于随机部分和问题.因此,研究随机部分和的极限性质不仅具有理论意义, 更具有现实意义.对此,很多学者已做了深入的研究[3-7].最近,PRAKASA[8]在相伴情形下研究了随机中心极限定理,给出了与已有研究不同的结论.

首先给出一些假设条件和记号.

下文中总记{Xn, n≥1}为严平稳序列,且满足

$ \begin{array}{*{20}{c}} {E{X_1} = \mu ,\sum\limits_{j = 1}^\infty {j\left| {{\rm{Cov}}\left( {{X_1},{X_{1 + j}}} \right)} \right| < \infty } ,}\\ {0 < {\sigma ^2} = {\rm{Var}}\left( {{X_1}} \right) + 2\sum\limits_{j = 2}^\infty {{\rm{Cov}}\left( {{X_1},{X_j}} \right) < \infty } .} \end{array} $

{Nn, n≥1}为一列非负整数随机序列,且与{Xn, n≥1}独立,假设

$ \frac{{E{N_n}}}{n} \to \nu > 0,\frac{{{\rm{Var}}\left( {{N_n}} \right)}}{n} \to {\tau ^2} < \infty ,n \to \infty , $ (2)
$ \frac{{{N_n} - E{N_n}}}{{\sqrt {{\text{Var}}\left( {{N_n}} \right)} }}\xrightarrow{d}{Z_1},n \to \infty , $ (3)

其中Z2为连续型随机变量.记

$ {S_{{N_n}}} = \sum\limits_{i = 1}^{{N_n}} {{X_i}} , $
$ {T_n} = \frac{{{S_{{N_n}}} - E{S_{{N_n}}}}}{{\sqrt {{\text{Var}}\left( {{S_{{N_n}}}} \right)} }} = \frac{{{S_{{N_n}}} - \mu {N_n}}}{{\sqrt {{\text{Var}}\left( {{S_{{N_n}}}} \right)} }} + \frac{{\left( {{N_n} - E{N_n}} \right)\mu }}{{\sqrt {{\text{Var}}\left( {{S_{{N_n}}}} \right)} }}, $
$ {T_n}\left( {{Z_1}} \right) = \sqrt {\frac{{{N_n}}}{{{\text{Var}}\left( {{S_{{N_n}}}} \right)}}} \sigma {Z_1} + \frac{{\left( {{N_n} - E{N_n}} \right)\mu }}{{\sqrt {{\text{Var}}\left( {{S_{{N_n}}}} \right)} }}, $
$ {T_n}\left( {{Z_1}} \right) = \sqrt {\frac{\nu }{{\nu {\sigma ^2} + {\mu ^2}{\tau ^2}}}} \sigma {Z_1} + \frac{{\left( {{N_n} - E{N_n}} \right)\mu }}{{\sqrt {{\text{Var}}\left( {{S_{{N_n}}}} \right)} }}, $
$ T\left( {{Z_1},{Z_2}} \right) = \frac{{\mu \tau }}{{\sqrt {\nu {\sigma ^2} + {\mu ^2}{\tau ^2}} }}\left[ {\frac{{\sigma \sqrt \nu }}{{\mu \tau }}{Z_1} + {Z_2}} \right]. $

定理B[8]  设{Xn, n≥1}为严平稳的相伴序列, 且{Xn, n≥1}, {Nn, n≥1}满足上述假设条件, 那么

$ {d_K}\left( {{T_n},T\left( {{Z_1},{Z_2}} \right)} \right) \to 0,n \to \infty . $

目前对混合序列下的随机中心极限定理的研究还较少,本文研究φ-混合序列,得到

定理1  设{Xn, n≥1}为严平稳的φ-混合序列,满足$\sum\limits_{n = 1}^\infty {{\varphi ^{1/2}}(n) < \infty } $, 且{Xn, n≥1}, {Nn, n≥1}满足上述假设条件, 那么

$ {d_K}\left( {{T_n},T\left( {{Z_1},{Z_2}} \right)} \right) \to 0,n \to \infty . $ (4)

注1  定理1说明在Kolmogorov距离下,适当正则化之后, 随机部分和SNn依分布收敛于T(Z1, Z2), 其中T(Z1, Z2)为2个独立随机变量Z1~N(0, 1)和Z2的线性函数.特别地,当Z2~N(0, 1)时,T(Z1, Z2)~N(0, 1).

注2  假设{Yk, k≥1}为一列独立同分布的取非负整值的随机序列,满足EY1=ν, Var(Y1)=τ2>0, 并且与{Xn, n≥1}独立, 令Nn=${N_n} = \sum\limits_{k = 1}^n {{Y_k}} $,那么,式(3)中的极限分布Z2~N(0, 1), 从而有T(Z1, Z2)~N(0, 1).

注3  由定义可知, 相伴序列和φ-混合序列互不包含, 因此本文推广了已有的结果.

2 定理的证明

为了证明定理1, 需要以下几个引理.

引理1  记P(Nn=k)=pn, k, cj=Cov(X1, X1+j), 在定理的假设条件下,有

$ \begin{array}{l} {\rm{Var}}\left( {{S_{{N_n}}}} \right) = E\left( {{N_n}} \right){\sigma ^2} + {\rm{Var}}\left( {{N_n}} \right){\mu ^2} - \\ \;\;\;\;\;2\sum\limits_{j = 1}^\infty {j{c_j}P\left( {{N_n} > j} \right)} - 2\sum\limits_{j = 1}^\infty {{c_j}\left( {\sum\limits_{k = 0}^j {k{p_{n,k}}} } \right)} , \end{array} $ (5)
$ \mathop {\lim }\limits_{n \to \infty } \frac{{{\rm{Var}}\left( {{S_{{N_n}}}} \right)}}{n} = \nu {\sigma ^2} + {\mu ^2}{\tau ^2}. $ (6)

证明  类似文献[8]中引理2.1的证明,可知式(5)成立,进一步,由$\sum\limits_{j = 1}^\infty {j\left| {{c_j}} \right| < \infty } $以及式(2),可知式(6)成立.

引理2 [8]  设{Un, U}为一随机变量序列,满足U的分布函数是α-Lipschitz连续的(α>0), V与{Un, U}独立的随机变量满足E|V|<∞. g为直线上的连续函数.那么对于任意的常数cδ>0以及任意的zR,有

$ \begin{array}{l} \left| {P\left( {{U_n} + Vg\left( {{U_n}} \right) \le z} \right) - P\left( {{U_n} + cV \le z} \right)} \right| \le \\ \;\;\;2\mathop {\sup }\limits_{x \in {\bf{R}}} \left| {P\left( {{U_n} \le x} \right) - P\left( {U \le x} \right)} \right| + \\ \;\;\;P\left( {\left| {g\left( {{U_n}} \right) - c} \right| > \delta } \right) + 2\alpha \delta E\left| V \right|. \end{array} $

引理3 [9]  如果FnF, F在闭集A上处处连续, 那么,

$ \mathop {\sup }\limits_{x \in A} \left| {{F_n}\left( x \right) - F\left( x \right)} \right| \to 0,n \to \infty . $

定理1的证明  首先证明

$ {d_K}\left( {{T_n},{T_n}\left( {{Z_1}} \right)} \right) \to 0,n \to \infty . $ (7)

$ \begin{array}{*{20}{c}} {P\left( {{N_n} = k} \right) = {p_{n,k}},}\\ {x\left( {n,k} \right) = \frac{{x\sqrt {{\rm{Var}}\left( {{S_{{N_n}}}} \right)} - \mu \left( {k - E{N_n}} \right)}}{{\sigma \sqrt k }},} \end{array} $

那么, 由全概率公式以及{Xn}与{Nn}的独立性, 可知

$ \begin{array}{l} \sum\limits_{n\nu /2 \le k \le 3n\nu /2} {{p_{n,k}}\mathop {\sup }\limits_{x \in {\bf{R}}} \left| {P\left( {\frac{{{S_k} - \mu k}}{{\sigma \sqrt k }} \le x\left( {n,k} \right)} \right) - } \right.} \\ \left. {P\left( {{Z_1} \le x\left( {n,k} \right)} \right)} \right| + P\left( {\left| {{N_n} - n\nu } \right| > n\nu /2} \right) = :\\ {I_1} + {I_2}, \end{array} $

由定理A和引理3,注意到标准正态分布函数的连续性,可知I1→0,由Markov不等式以及式(2),可知I2→0,从而得式(7)成立.

其次证明

$ {d_K}\left( {{T_n}\left( {{Z_1}} \right),{T_n}\left( {{Z_1}} \right)} \right) \to 0,\;\;\;\;n \to \infty . $ (8)

由Chebyshev不等式以及式(2)和式(6),易推得

$ \frac{{{N_n}}}{{{\text{Var}}\left( {{S_{{N_n}}}} \right)}}\xrightarrow{P}\frac{\nu }{{\nu {\sigma ^2} + {\mu ^2}{\tau ^2}}}, $ (9)

由式(2)和引理1,可得

$ \frac{{{\rm{Var}}\left( {{N_n}} \right)}}{{{\rm{Var}}\left( {{S_{{N_n}}}} \right)}} \to \frac{{{\tau ^2}}}{{\nu {\sigma ^2} + {\mu ^2}{\tau ^2}}},\;\;\;n \to \infty , $ (10)

由式(10)以及Slutsky定理,知

$ \frac{{{N_n} - E{N_n}}}{{{\text{Var}}\left( {{S_{{N_n}}}} \right)}}\xrightarrow{d}\frac{\tau }{{\sqrt {\nu {\sigma ^2} + {\mu ^2}{\tau ^2}} }}{Z_2},\;\;\;n \to \infty , $ (11)

注意到{Nn, Z2}与Z1独立,在引理2中取

$ \begin{gathered} {U_n} = \frac{{\left( {{N_n} - E{N_n}} \right)\mu }}{{{\text{Var}}\left( {{S_{{N_n}}}} \right)}},U = \tau \mu {Z_2}\sqrt {\frac{1}{{\nu {\sigma ^2} + {\mu ^2}{\tau ^2}}}} ,V = {Z_1}, \hfill \\ g\left( {{U_n}} \right) = \sigma \sqrt {\frac{{{N_n}}}{{{\text{Var}}\left( {{S_{{N_n}}}} \right)}}} ,c = \sigma \sqrt {\frac{\nu }{{\nu {\sigma ^2} + {\mu ^2}{\tau ^2}}}} , \hfill \\ \end{gathered} $

由式(9)、(11)、引理3及δd的任意性,可推得式(8)成立.

接下来证明

$ {d_K}\left( {{T_n}\left( {{Z_1}} \right),T\left( {{Z_1},{Z_2}} \right)} \right) \to 0,\;\;\;\;n \to \infty . $ (12)

注意到Z1Z2独立, 从而有

$ \begin{array}{l} {d_K}\left( {{T_n}\left( {{Z_1}} \right),T\left( {{Z_1},{Z_2}} \right)} \right) = \\ \int {\mathop {\sup }\limits_{x \in {\bf{R}}} \left| {P\left( {{T_n}\left( u \right) \le x} \right) - } \right.} \\ P\left( {T\left( {u,{Z_2}} \right) \le x} \right)\left| {{\rm{d}}\mathit{\Phi }\left( u \right)} \right. = \\ \int {\mathop {\sup }\limits_{x \in {\bf{R}}} \left| {P\left( {\frac{{\left( {{N_n} - E{N_n}} \right)\mu }}{{{\rm{Var}}\left( {{S_{{N_n}}}} \right)}} \le y\left( {x,u} \right)} \right) - } \right.} \\ \left. {P\left( {\tau \mu {Z_2}\sqrt {\frac{1}{{\nu {\sigma ^2} + {\mu ^2}{\tau ^2}}}} \le y\left( {x,u} \right)} \right)} \right|\left| {{\rm{d}}\mathit{\Phi }\left( u \right)} \right. \le \\ \mathop {\sup }\limits_{Z \in R} \left| {P\left( {\frac{{{N_n} - E{N_n}}}{{{\rm{Var}}\left( {{S_{{N_n}}}} \right)}} \le z} \right) - P\left( {\tau {Z_2}\sqrt {\frac{1}{{\nu {\sigma ^2} + {\mu ^2}{\tau ^2}}}} \le z} \right)} \right|, \end{array} $

其中, $y(x, u) = x-u\sigma \sqrt {\frac{\nu }{{\nu {\sigma ^2} + {\mu ^2}{\tau ^2}}}}.$.

再由式(3)、引理3以及Z2为连续性随机变量,可知式(12)成立.

最后联立式(7)、(8)、(12)以及三角不等式:

$ \begin{array}{l} {d_K}\left( {{T_n},T\left( {{Z_1},{Z_2}} \right)} \right) \le {d_K}\left( {{T_n},{T_n}\left( {{Z_1}} \right)} \right) + \\ {d_K}\left( {{T_n}\left( {{Z_1}} \right),{T_n}\left( {{Z_1}} \right)} \right) + {d_K}\left( {{T_n}\left( {{Z_1}} \right),T\left( {{Z_1},{Z_2}} \right)} \right). \end{array} $

可知定理1成立.

参考文献
[1] LIN Z Y, LU C R. Limit Theory for Mixing Dependent Random Variables[M]. Beijing: Science Press/Kluwer Academic Publishers, 1997.
[2] IBRAGIMOV I A. Some limit theorems for stationary processes[J]. Akademija Nauk SSSR Teorija Verojatnoste1iee Primenenija, 1962(7): 361–392.
[3] PRAKASA RAO B L S. Remark on the rate of convergence in the random central limit theorem for mixing sequences[J]. Z Wahrscheinlichkeitstheorie Und Verw Gebiete, 1975, 31(2): 157–160. DOI:10.1007/BF00539440
[4] LEE S. Random central limit theorem for the linear process generated by a strong mixing process[J]. Statistics & Probability Letters, 1997, 35(2): 189–196.
[5] 谭希丽, 杨晓云. Bm相依随机元序列的随机指标中心极限定理[J]. 吉林大学学报(理学版), 2003, 41(4): 419–430.
TAN X L, YANG X Y. The central limit theorem for the sum of a random number of m-dependent B-valued random variables[J]. Journal of Jilin University (Science Edition), 2003, 41(4): 419–430.
[6] 谭希丽, 杨晓云. Bm相依随机元列移动平均过程的随机指标中心极限定理[J]. 吉林大学学报(理学版), 2007, 45(2): 159–164.
TAN X L, YANG X Y. The central limit theorem for the sum of a random number of moving average processes of m-dependent B-valued elements[J]. Journal of Jilin University (Science Edition), 2007, 45(2): 159–164.
[7] HWANG E, SHIN D W. Random central limit theorems for linear processes with weakly dependent innovations[J]. Journal of the Korean Statistical Society, 2012, 41(3): 313–322. DOI:10.1016/j.jkss.2011.10.004
[8] PRAKASA RAO B L S, SREENHARI M. Random central limit theorem for associated random variables and the order of approximation[J]. Statistics & Probability Letters, 2016, 111: 1–7.
[9] BILLINGSLEY P. Convergence of Probability Measures[M]. New York: Wiley, 1968.