文章快速检索     高级检索
  浙江大学学报(理学版)  2018, Vol. 45 Issue (4): 391-393  DOI:10.3785/j.issn.1008-9497.2018.04.001
0

citing the article as [复制中英文]

GUO Litao. Sufficient conditions for graphs to be super connected[J]. Journal of Zhejiang University(Science Edition), 2018, 45(4): 391-393. DOI: 10.3785/j.issn.1008-9497.2018.04.001.
[复制英文]
郭利涛. 超连通图的充分条件[J]. 浙江大学学报(理学版), 2018, 45(4): 391-393. DOI: 10.3785/j.issn.1008-9497.2018.04.001.
[复制中文]

Fundation item

Supported by NSFC(11301440)

About the author

GUO Litao(1982-), ORCID:http://orcid.org/0000-0003-1410-8509, male, doctor, associate professor, the field of interest is graph theory, E-mail:ltguo2012@126.com

Article History

Received Date: July 31, 2017
Sufficient conditions for graphs to be super connected
GUO Litao     
School of Applied Mathematics, Xiamen University of Technology, Xiamen 361024, Fujian Province, China
Received Date: July 31, 2017
Fundation item: Supported by NSFC(11301440)
About the author: GUO Litao(1982-), ORCID:http://orcid.org/0000-0003-1410-8509, male, doctor, associate professor, the field of interest is graph theory, E-mail:ltguo2012@126.com
Abstract: Let G be a connected graph. The connectivity κ(G) of a connected graph G is the least positive integer k such that there is FV, |F|=k, and G-F is disconnected or is a trivial graph. If every minimum vertex cut isolates a vertex of G, a graph G is super connected or super-κ. Define the inverse degree of a graph G with no isolated vertices as $R\left( G \right){\text{ = }}\sum\limits_{v \in V} {\frac{1}{{d\left( v \right)}}} $. In this paper, we show that let G be a connected graph with order n and minimum degree δ, if $R\left( G \right) < 1 + \frac{2}{{\delta + 1}} + \frac{{n-2\delta-1}}{{\left( {n-1} \right)\left( {n - 3} \right)}}$, then G is super-κ.
Key words: connectivity    inverse degree    super connected    
超连通图的充分条件
郭利涛    
厦门理工学院 应用数学学院, 福建 厦门 361024
摘要: 设G是一个连通图.图的连通度κG)存在一个最小正整数k,使得FV,|F|=kG-F不连通或是一个平凡图.如果每一个最小点割都孤立G的一个点,则图G是超连通的或超-κ的.定义没有孤立点的图G的逆度为$R\left( G \right){\text{ = }}\sum\limits_{v \in V} {\frac{1}{{d\left( v \right)}}} $.得到:设n阶连通图G,最小度为δ,若$R\left( G \right) < 1 + \frac{2}{{\delta + 1}} + \frac{{n-2\delta-1}}{{\left( {n-1} \right)\left( {n - 3} \right)}}$,则G是超-κ的.
关键词: 连通度    逆度    超连通    
0 Introduction

All graphs considered in this paper are simple, finite and undirected. Unless stated otherwise, we follow BONDY et al [1] for terminology and definitions.

Let G=(V, E) be a connected graph, dG(v) the degree of a vertex v in G (simply d(v)), and δ(G) the minimum degree of G. Moreover, for SV, G[S] is the subgraph induced by S. And G-S denotes the subgraph of G induced by the vertex set of V, S. We write Kn for the complete graph of order n. If u, vV, d(u, v) denotes the length of a shortest (u, v)-path. And, the diameter is dm(G)=max{d(u, v): u, vV}.

The edge connectivity λ(G) of a connected graph G is the least positive integer k such that there is FE, |F|=k and G-F is disconnected. A graph G is super edge connected or super-λ, if every minimum edge cut isolates a vertex of G. If G is super-λ, then λ=δ. The connectivity κ(G) of a connected graph G is the least positive integer k such that there is FV, |F|=k and G-F is disconnected or is a trivial graph. A graph G is super connected or super-κ, if every minimum vertex cut isolates a vertex of G. If G is super-κ, then κ=δ. It is well known that κ(G)≤λ(G)≤δ(G).

Different authors proposed sufficient conditions for a graph to be super-λ.

Theorem 1  A connected graph G with order n is super-λ, if one of the following conditions holds:

(1) δ≥(n+1)/2(by KELMANS [2]);

(2) d(u)+d(v)≥n for all pairs u, v of nonadjacent vertices, and G is different from Kn/2×K2(by LESNIAK [3]);

(3) d(u)+d(v)≥n+1 for all pairs u, v of nonadjacent vertices(by LESNIAK [3]);

(4) dm(G)=2, and G contains no complete Kδ with all its vertices of degree δ(by FIOL [4]);

(5) G is bipartite and d(u)+d(v)≥n/2+2 for all pairs u, v of vertices such that d(u, v)≥3 (by FIOL[4]);

(6) G is bipartite and δ≥max{3, (n+2)/4+1} (by FIOL[4]);

(7) $R\left( G \right) < 2 + \frac{{n-2\delta }}{{\left( {n-\delta } \right)\left( {n-\delta - 1} \right)}}$(by TIAN et al[5]).

Define the inverse degree of a graph G with no isolated vertices as $R\left( G \right) = \sum\limits_{v \in V} {\frac{1}{{d\left( v \right)}}} $.The inverse degree firstly attracted the attention through conjectures of the computer program[6]. It has been studied by several authors [7-9]. In this paper, we show that let G be a connected graph with order n, minimum degree δ. If $R\left( G \right) < 1 + \frac{2}{{\delta + 1}} + \frac{{n-2\delta-1}}{{\left( {n-1} \right)\left( {n - 3} \right)}}$, then G is super-κ.

1 Main results

We start the section with the following useful lemmas.

The following lemmas can be found in [8], we rewrite its proof for convenience here.

Lemma 1 [8]  (1) Let a1, a2, …, ap, A be positive deals with $\sum\limits_{i = 1}^p {{a_i} \leqslant A} $. Then $\sum\limits_{i = 1}^p {\left( {1/{a_i}} \right) \geqslant {p^2}/A} $.

(2) If, in addition a1, a2, …, ap, A are positive integers, and a, b are integers with A=ap+b and 0≤bp, then $\sum\limits_{i = 1}^p {\left( {1/{a_i}} \right) \geqslant \left( {p-b} \right)/a + b/\left( {a + 1} \right)} $. Equality holds if and only if p-b of ai equal to a and the remaining ai equal to a+1.

(3) If f(x) is continuous and convex on an interval [L, R], and if l, r∈[L, R], with l+r=L+R, then f(L)+f(R)≥f(l)+f(r).

Proof  (1) Follows by applying the function $f\left( x \right) = \frac{1}{x}$, which is convex on the interval (0, ∞).

(3) Follows from the definition of convex function.

(2) We can assume that ai are chosen such that $\sum {\frac{1}{{{a_i}}}} $ is minimum. If no two of the ai differ by more than 1, then p-b of the ai equals to a and the remaining b of the ai equals to a+1, and the inequality follows. So assume that there are two of ai, say a1 and a2, differ by more than 1: Assume further that a1>a2. Let b1=a1-1, b2=a2+1, and bi=ai for i≥3. Then we can find that $\sum {\frac{1}{{{a_i}}}} > \sum {\frac{1}{{{b_i}}}} $, a contradiction.

Lemma 2 [10]  Let G be a connected graph of order n, minimum degree δ. If

$ R\left( G \right) < 1 + \frac{2}{\delta } + \frac{{n-2\delta + 1}}{{\left( {n-1} \right)\left( {n-3} \right)}}, $

then κ=δ.

Theorem 2  Let G be a connected graph with order n, minimum degree δ. If

$ R\left( G \right) < 1 + \frac{2}{{\delta + 1}} + \frac{{n-2\delta-1}}{{\left( {n-1} \right)\left( {n - 3} \right)}}, $

then G is super-κ.

Proof  By lemma 2, κ=δ. Suppose that G is not super-κ. We assume that SV(G) with |S|=κ is a cut of G, and X1, X2, …, Xp are the connected components of G-S. Then 2≤|Xi|≤n-δ(G)-2 for i=1, 2, …, p.

Because every vertex of S is adjacent to some vertex of Xi for i=1, 2, …, p. We can obtain

$ \sum\limits_{u \in {X_i}} {d\left( u \right)} \leqslant \left| {{X_i}} \right|\left( {\left| {{X_i}} \right|-1} \right) + \left| {{X_i}} \right|\delta = \left| {{X_i}} \right|\left( {\left| {{X_i}} \right| + \delta-1} \right). $

According to lemma 1, we have

$ \sum\limits_{u \in {X_i}} {\frac{1}{{d\left( u \right)}}} \geqslant \frac{{\left| {{X_i}} \right|}}{{\left| {{X_i}} \right| + \delta-1}}. $

For any vertex vS, d(v)≤n-1, thus $\sum\limits_{v \in S} {\frac{1}{{d\left( v \right)}}} \geqslant \frac{\delta }{{n-1}}$.Suppose that $X = \bigcup\limits_{i = 2}^p {{X_i}} $, then

$ \sum\limits_{i = 2}^p {\frac{{\left| {{X_i}} \right|}}{{\left| {{X_i}} \right| + \delta-1}} \geqslant \frac{{\left| X \right|}}{{\left| X \right| + \delta-1}}} . $

Therefore, the inverse degree of G is

$ \begin{gathered} R\left( G \right) \geqslant \sum\limits_{i = 1}^p {\frac{{\left| {{X_i}} \right|}}{{\left| {{X_i}} \right| + \delta-1}}} + \frac{\delta }{{n-1}} \geqslant \hfill \\ \frac{{\left| {{X_1}} \right|}}{{\left| {{X_1}} \right| + \delta-1}} + \frac{{\left| X \right|}}{{\left| X \right| + \delta - 1}} + \frac{\delta }{{n - 1}} = \hfill \\ 2 + \frac{\delta }{{n - 1}} - \left( {\delta - 1} \right)\left( {\frac{1}{{\left| {{X_1}} \right| + \delta - 1}} + \frac{1}{{\left| X \right| + \delta - 1}}} \right). \hfill \\ \end{gathered} $

We consider the function $g\left( t \right) = \frac{1}{{t + \delta-1}}$. It is easy to verify that g″(t)>0 for t>0, so g is convex. By |X1|, |Y|≥2, |X1|+|Y|=n-δ and applying lemma 1 (3) to the function g(t), we get

$ \frac{1}{{\left| {{X_1}} \right| + \delta-1}} + \frac{1}{{\left| X \right| + \delta-1}} \leqslant \frac{1}{\delta } + \frac{1}{{n-2}}. $

Hence, we have

$ \begin{gathered} R\left( G \right) \geqslant 2 + \frac{\delta }{{n-1}} + \left( {\delta-1} \right)\left( {\frac{1}{\delta } + \frac{1}{{n-2}}} \right) = \hfill \\ \;\;\;\;\;\;\;\;\;\;1 + \frac{2}{{\delta + 1}} + \frac{{n - 2\delta - 1}}{{\left( {n - 1} \right)\left( {n - 3} \right)}}. \hfill \\ \end{gathered} $

There is a contradiction.

References
[1] BONDY J, MURTY U. Graph Theory and Its Application[M]. New York: Academic Press, 1976.
[2] KELMANS A. Asymptotic formulas for the probability of k-connectedness of random graphs[J]. Theory of Probability and Its Applications, 1972, 17(2): 253–265.
[3] LESNIAK L. Results on the edge-connectivity of graphs[J]. Discrete Mathematics, 1974, 8(4): 351–354. DOI:10.1016/0012-365X(74)90154-X
[4] FIOL M. On super-edge-connected digraphs and bipartite digraphs[J]. Journal of Graph Theory, 1992, 16(6): 545–555. DOI:10.1002/(ISSN)1097-0118
[5] TIAN Y Z, GUO L T, MENG J X, et al. Inverse degree and super edge-connectivity[J]. International Journal of Computer Mathematics, 2012, 89(6): 752–759. DOI:10.1080/00207160.2012.663491
[6] FAJTLOWICZ S. On conjectures of graffiti Ⅱ[J]. Congr Numer, 1987, 60: 189–197.
[7] DANKELMANNP, SWART H, BERG P V D. Diameter and inverse degree[J]. Discrete Mathematics, 2008, 308(5): 670–673.
[8] DANKELMANNP, HELLWIG A, VOLKMANN L. Inverse degree and edge-connectivity[J]. Discrete Mathematics, 2009, 309(9): 2943–2947. DOI:10.1016/j.disc.2008.06.041
[9] ERDÖS P, PACH J, SPENCER J. On the mean distance between points of a graph[C]//Proceedings of the 250th Anniversary Conference on Graph Theory, Congressus Numerantium 64. Winnipeg: Utilitas Mathematica Publishing Inc, 1988: 121-124.
[10] MA X L, TIAN Y Z. Inverse degree and connectivity[J]. Chinese Quarterly Journal of Mathematics, 2013, 28(2): 257–260.