文章快速检索     高级检索
  浙江大学学报(理学版)  2018, Vol. 45 Issue (2): 180-187, 195  DOI:10.3785/j.issn.1008-9497.2018.02.008
0

引用本文 [复制中英文]

刘卫锋, 常娟, 杜迎雪. 连续拟有序加权几何算子及其群决策应用[J]. 浙江大学学报(理学版), 2018, 45(2): 180-187, 195. DOI: 10.3785/j.issn.1008-9497.2018.02.008.
[复制中文]
LIU Weifeng, CHANG Juan, DU Yingxue. Continuous quasi-ordered weighted geometric operator and its application to group decision making[J]. Journal of Zhejiang University(Science Edition), 2018, 45(2): 180-187, 195. DOI: 10.3785/j.issn.1008-9497.2018.02.008.
[复制英文]

基金项目

国家自然科学基金青年科学基金资助项目(11501525);河南省高等学校重点科研项目(18A110032);航空科学基金项目(2016ZG55019);郑州航空工业管理学院青年科研基金项目(2016113001)

作者简介

刘卫锋(1976-),ORCID:http://orcid.org/0000-0002-8127-9650, 男, 硕士, 副教授, 主要从事模糊数学研究

文章历史

收稿日期:2016-08-03
连续拟有序加权几何算子及其群决策应用
刘卫锋 , 常娟 , 杜迎雪     
郑州航空工业管理学院 理学院, 河南 郑州 450015
摘要: 将拟有序加权几何算子(QOWG)推广至连续区间数上, 提出了连续QOWG算子(CQOWG), 探讨了其特殊情况和相关性质.其次, 定义了CQOWG算子的orness测度, 研究了orness测度的性质.然后, 定义了加权连续QOWG算子(WCQOWG)、有序加权连续QOWG算子(OWCQOWG)以及组合连续QOWG算子(CCQOWG), 并讨论了它们的性质.最后, 提出了基于连续QOWG算子的多属性群决策方法, 并通过决策实例说明其可行性与有效性.
关键词: 区间数    连续QOWG算子    群决策    集成算子    orness测度    
Continuous quasi-ordered weighted geometric operator and its application to group decision making
LIU Weifeng, CHANG Juan, DU Yingxue     
College of Science, Zhengzhou University of Aeronautics, Zhengzhou 450015, China
Abstract: The multi-attribute group decision-making is discussed, in which the attribute weights and the decision-maker are known, with the attribute values expressed by interval numbers.Motivated by the idea of quasi-ordered weighted geometric operator(QOWG), some QOWG operators for aggregating interval numbers are developed.Firstly, the QOWG operator is extended to the case in which the input argument is a continuous interval number, and the continuous QOWG operator(CQOWG) is defined.The special cases and some features of the CQOWG operator are discussed.Then, the orness measure of the CQOWG operator is defined, and its properties are also investigated.Further, the weighted continuous QOWG operator(WCQOWG), the ordered weighted continuous QOWG operator(OWCQOWG) and the combined continuous QOWG operator(CCQOWG) are proposed, and the properties of these operators are also discussed.Finally, an approach for multi-attribute group decision-making based on continuous QOWG operator is presented, and a practical example is given to verify the proposed methods and to demonstrate their feasibility and effectiveness.
Key words: interval number    continuous QOWG operator    group decision-making    aggregation operator    orness measure    

信息集成算子是多属性决策研究的重要内容之一.当前, 信息集成算子主要有(加权)算术平均算子(WA)[1]、(加权)几何平均算子(WG)[2]、有序加权平均算子(OWA)[3]、有序加权几何平均算子(OWG)[4]、有序加权调和平均算子(OWH)[5]、广义加权有序平均算子(GOWA)[6]、拟有序加权平均算子(QOWA)[7]等.最近, 在QOWA算子的启发下, 刘卫锋等[8]将拟函数与有序加权几何算子相结合, 定义了拟有序加权几何算子(QOWG), 并将其推广至毕达哥拉斯模糊决策环境.QOWG算子的提出丰富了集成算子的类型, 发展了集成算子理论.

由于实际决策中经常碰到区间数决策信息的情况, 许多学者开始研究区间数决策信息集成, 并取得了一系列研究成果.其中, XU等[911]提出了UOWA算子、UOWG算子、区间数幂均算子; MERIGÓ等研究了UIOWAWA算子[12]及区间诱导QOWA集成算子[13]; RAN等[14]将优先加权平均算子推广到区间数, 定义了UPWA算子、UPWG算子及UPWHA算子; YAGER等[1516]研究了COWA算子以及COWG算子, XU[17]将COWA算子应用于求解区间模糊偏好关系的排序向量; 徐泽水[18]定义了WCOWA算子、OWCOWA算子及CCOWA算子; 龚艳冰等[19]提出了模糊COWA算子; 汪新凡[20]定义了WCOWG算子、OWCOWG算子及CCOWG算子; 丁德臣等[21]定义了模糊COWG算子; WU等[22]研究了ICOWG算子; 陈华友等[23]探讨了COWH算子; ZHOU等[24]提出了CGOWA算子及其扩展; LIU等[25]定义了CQOWA算子.分析发现, 上述集成算子大致可分为2类:一类是以XU为代表的将集成算子直接由实数推广至区间数, 如文献[9-14].但此类算子在集成过程中涉及区间数的各种运算, 利用可能度[9]等方法实现区间数的排序, 而区间数运算往往易导致不确定性的增加, 使得到的结果出现较大误差甚至失真.另一类是以YAGER和XU为代表, 主要通过引入反映决策者决策态度的态度参数将区间数转化为实数, 然后进行集成, 如文献[15-25].该类算子避免了区间数运算和排序引发的系列问题.

由于目前QOWG算子仅适用于精确数信息的集成, 因而有必要将其推广至区间数决策环境, 定义连续区间QOWG算子, 扩大QOWG算子的决策应用范围.借助生成函数, 连续区间QOWG算子可将多种信息集成为算子综合在一个函数表达式之中, 故而在决策中, 决策者只需通过控制生成函数即可实现决策结果的调整, 从而令不同的生成函数对应于不同的集成算子; 同时, 连续区间QOWG算子中态度参数的选择也给决策者带来了很大的主动性.因此, 研究连续区间QOWG算子, 对于发展QOWG集成算子以及区间数集成算子均具有重要的理论和现实意义.

根据以上分析, 笔者尝试将QOWG算子推广至连续区间的数决策环境.首先, 定义连续QOWG算子(continuous QOWG operator, CQOWG), 讨论其性质和特殊形式.其次, 定义CQOWG算子的orness测度, 探讨orness测度的性质.然后, 拓展CQOWG算子, 定义了加权连续QOWG算子(WCQOWG)、有序加权连续QOWG算子(OWCQOWG)以及组合连续QOWG算子(CCQOWG), 并探讨了它们的性质.最后, 提出基于CQOWA算子的群决策方法, 并通过决策实例说明其可行性与有效性.

1 相关概念

定义1[8]   设aiR+(i=1, 2, …, n)为一组待集成数据, 其中R+={x|x>0}, 若函数

$ {\rm{QOWG}}: = {\left( {{R^ + }} \right)^n} \to {R^ + }, $
$ {\rm{QOWG}}\left( {{a_1},{a_2}, \cdots ,{a_n}} \right) = {f^{ - 1}}\left( {\prod\limits_{j = 1}^n {{{\left( {f\left( {{b_j}} \right)} \right)}^{{w_j}}}} } \right), $

则称QOWG为拟有序加权几何算子, 简称QOWG算子, 其中bj表示ai(i=1, 2, …, n)中第j大的数, f为严格单调连续函数, 而(w1, w2, …, wn)为与QOWG算子相关联的权重向量, wj≥0且$\sum\limits_{j = 1}^n {{w_j}} = 1$.

定义2[15]   若函数F:Ω→R+满足

$ {F_Q}\left( {\left[ {a,b} \right]} \right) = \int_0^1 {\frac{{{\rm{d}}Q\left( y \right)}}{{{\rm{d}}y}}\left( {b - y\left( {b - a} \right)} \right){\rm{d}}y} , $

则称F为COWA算子, 其中[a, b]∈Ω, Ω={[a, b]| 0 < ab}, FQ有关, 称Q为基本单位区间单调函数(BUM), 满足Q:[0, 1]→[0, 1], 且Q(0)=0, Q(1)=1.

定理1[15]   设$\mu = \int_0^1 {Q\left( y \right){\rm{d}}y} $, 则有

$ {F_Q}\left( {\left[ {a,b} \right]} \right) = \mu b + \left( {1 - \mu } \right)a, $

其中, μ为BUM函数Q的态度参数.

定义3[16]   若函数G:Ω→R+满足

$ {G_Q}\left( {\left[ {a,b} \right]} \right) = b\left( {\frac{a}{b}} \right)\int_0^1 {\frac{{{\rm{d}}Q\left( y \right)}}{{{\rm{d}}y}}y{\rm{d}}y} , $

则称G为COWG算子, 其中[a, b]∈Ω, GQ有关, Q为BUM函数.

定理2[16]   设$\mu = \int_0^1 {Q\left( y \right){\rm{d}}y} $为BUM函数Q的态度参数, 则有GQ([a, b])=bμa1-μ.

定义4[23]   若函数H:Ω→R+满足

$ {H_Q}\left( {\left[ {a,b} \right]} \right) = \frac{1}{{\int_0^1 {\frac{{{\rm{d}}Q\left( y \right)}}{{{\rm{d}}y}}\left( {\frac{1}{b} - y\left( {\frac{1}{a} - \frac{1}{b}} \right)} \right){\rm{d}}y} }}, $

则称H为COWH算子, 其中[a, b]∈Ω, HQ有关, Q为BUM函数.

定理3[23]   设$\mu = \int_0^1 {Q\left( y \right){\rm{d}}y} $为BUM函数Q的态度参数, 则有HQ([a, b])= ${H_Q}\left( {\left[ {a,b} \right]} \right) = 1/\left[ {\frac{\mu }{b} + \frac{{1 - \mu }}{a}} \right]$.

定义5[24]   若函数g:Ω→R+满足

$ {g_Q}\left( {\left[ {a,b} \right]} \right) = {\left( {\int_0^1 {\frac{{{\rm{d}}Q\left( y \right)}}{{{\rm{d}}y}}\left( {{b^\lambda } - y\left( {{b^\lambda } - {a^\lambda }} \right)} \right){\rm{d}}y} } \right)^{1/\lambda }}{\rm{d}}y, $

则称函数g为连续区间广义OWA算子, 简称CGOWA算子, 其中[a, b]∈Ω, gQ有关, Q为BUM函数, 参数λR-{0}.

定理4[24]   设$\mu = \int_0^1 {Q\left( y \right){\rm{d}}y} $, 则有gQ([a, b])=(μbλ+(1-μ)aλ)1/λ, 其中, μ为BUM函数Q的态度参数.

定义6[25]   若函数φ:Ω→R+满足

$ {\varphi _{Q,f}}\left( {\left[ {a,b} \right]} \right) = {f^{ - 1}}\left\{ {\int_0^1 {\frac{{{\rm{d}}Q\left( y \right)}}{{{\rm{d}}y}}\left( {f\left( b \right) - y\left( {f\left( b \right) - f\left( b \right)} \right)} \right){\rm{d}}y} } \right\}, $

则称函数φ为连续区间拟OWA算子, 简称CQOWA算子, 其中[a, b]∈Ω, φQ有关, Q为与函数φ相关联的BUM函数, f为[a, b]上严格单调的连续函数, 称为φQ, f([a, b])的导出函数.

定理5[25]  设$\mu = \int_0^1 {Q\left( y \right){\rm{d}}y} $, 则有

$ {\varphi _{Q,f}}\left( {\left[ {a,b} \right]} \right) = {f^{ - 1}}\left[ {f\left( a \right) - \mu \left( {f\left( b \right) - f\left( a \right)} \right)} \right], $

其中μ为BUM函数Q的态度参数.

2 连续拟有序加权几何算子

定义7   设[a, b]∈Ω, 若函数φ:Ω→R+满足

$ {\varphi _{Q,f}}\left( {\left[ {a,b} \right]} \right) = {f^{ - 1}}\left\{ {f\left( b \right){{\left( {\frac{{f\left( a \right)}}{{f\left( b \right)}}} \right)}^{\int_0^1 {\frac{{{\rm{d}}Q\left( y \right)}}{{{\rm{d}}y}}y{\rm{d}}y} }}} \right\}, $

则称函数φ为连续区间拟OWG算子, 简称CQOWG算子, 其中, Q为与函数φ相关联的BUM函数, f为[a, b]上严格单调的连续函数, 称为φQ, f([a, b])的导出函数.

下面从定积分角度说明定义7中公式的由来.

设[a, b]∈Ω, f为[a, b]上的严格单调连续函数, Q(y)为BUM函数, 则由BUM函数可得到QOWG算子的一组加权向量

$ {\mathit{\boldsymbol{w}}_j} = Q\left( {\frac{j}{n}} \right) - Q\left( {\frac{{j - 1}}{n}} \right),j = 1,2, \cdots ,n, $

满足wj∈[0, 1], j=1, 2, …, n$\sum\limits_{j = 1}^n {{w_j}} = 1$.

下面构造一组离散的数据集合逼近连续区间数[a, b].

$\delta = {\left( {\frac{{f\left( a \right)}}{{f\left( b \right)}}} \right)^{1/n}},{且}\;{q_j} = {f^{ - 1}}\left[ {f\left( b \right){\delta ^j}} \right] = {f^{ - 1}}\left[ {f\left( b \right){{\left( {\frac{{f\left( a \right)}}{{f\left( b \right)}}} \right)}^{j/n}}} \right]$, j=0, 1, 2, …, n.当j=0时, qj=b; 当j=n时, qj=a.当f(x)为严格单调连续递增函数时, f-1(x)也是严格单调连续递增函数, 故f(a)≤f(b), 即有$\frac{{f\left( a \right)}}{{f\left( b \right)}} \le 1 $, 于是${\left( {\frac{{f\left( a \right)}}{{f\left( b \right)}}} \right)^{\frac{j}{n}}} \ge {\left( {\frac{{f\left( a \right)}}{{f\left( b \right)}}} \right)^{\frac{{j + 1}}{n}}}$, 故

$ f\left[ {f\left( b \right){{\left( {\frac{{f\left( a \right)}}{{f\left( b \right)}}} \right)}^{\frac{j}{n}}}} \right] \ge f\left[ {f\left( b \right){{\left( {\frac{{f\left( a \right)}}{{f\left( b \right)}}} \right)}^{\frac{{j + 1}}{n}}}} \right], $

qjqj+1, 于是得到q0q1q2≥…≥qn.当f(x)严格单调连续递减时, 同理也可得到q0q1q2≥…≥qn.

根据QOWG算子, 可以得到

$ \begin{array}{l} {\varphi _{Q,f}}\left( {\left[ {a,b} \right]} \right) \approx {\rm{QOWG}}\left( {{q_1},{q_2}, \cdots ,{q_n}} \right) = \\ \;\;\;\;\;\;{f^{ - 1}}\left\{ {\prod\limits_{j = 1}^n {{{\left( {f\left( {{q_j}} \right)} \right)}^{{w_j}}}} } \right\} = \\ \;\;\;\;\;\;{f^{ - 1}}\left\{ {\prod\limits_{j = 1}^n {{{\left( {f\left( b \right){{\left( {\frac{{f\left( a \right)}}{{f\left( b \right)}}} \right)}^{j/n}}} \right)}^{Q\left( {\frac{j}{n}} \right) - Q\left( {\frac{{j - 1}}{n}} \right)}}} } \right\} = \\ \;\;\;\;\;\;{f^{ - 1}}\left\{ {f\left( b \right){{\left( {\frac{{f\left( a \right)}}{{f\left( b \right)}}} \right)}^{\sum\limits_{j = 1}^n {\frac{j}{n}\left( {Q\left( {\frac{j}{n}} \right) - Q\left( {\frac{{j - 1}}{n}} \right)} \right)} }}} \right\}. \end{array} $

令Δy=1/n, 有

$ \begin{array}{l} {\varphi _{Q,f}}\left( {\left[ {a,b} \right]} \right) \approx \\ \;\;\;\;\;\;{f^{ - 1}}\left\{ {f\left( b \right){{\left( {\frac{{f\left( a \right)}}{{f\left( b \right)}}} \right)}^{\sum\limits_{j = 1}^n {j\Delta y\left( {Q\left( {j\Delta y} \right) - Q\left( {j\Delta y - \Delta y} \right)} \right)} }}} \right\} = \\ \;\;\;\;\;\;{f^{ - 1}}\left\{ {f\left( b \right){{\left( {\frac{{f\left( a \right)}}{{f\left( b \right)}}} \right)}^{\sum\limits_{j = 1}^n {j\Delta y\left( {\frac{{Q\left( {j\Delta y} \right) - Q\left( {j\Delta y - \Delta y} \right)}}{{\Delta y}}} \right)\Delta y} }}} \right\}. \end{array} $

y=jΔy, 则当j从0取到n时, 有y∈[0, 1], 对上式两端取极限, 令n→+∞, 得到

$ {\varphi _{Q,f}}\left( {\left[ {a,b} \right]} \right) = {f^{ - 1}}\left\{ {f\left( b \right){{\left( {\frac{{f\left( a \right)}}{{f\left( b \right)}}} \right)}^{\int_0^1 {\frac{{{\rm{d}}Q\left( y \right)}}{{{\rm{d}}y}}y{\rm{d}}y} }}} \right\}. $

定理6   设$\mu = \int_0^1 {Q\left( y \right){\rm{d}}y} $为BUM函数Q的态度参数, 则有φQ, f([a, b])=f-1[f(a)1-μf(b)μ].

证明

$ \begin{array}{l} {\varphi _{Q,f}}\left( {\left[ {a,b} \right]} \right) = {f^{ - 1}}\left\{ {f\left( b \right){{\left( {\frac{{f\left( a \right)}}{{f\left( b \right)}}} \right)}^{\int_0^1 {\frac{{{\rm{d}}Q\left( y \right)}}{{{\rm{d}}y}}y{\rm{d}}y} }}} \right\} = \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{f^{ - 1}}\left\{ {f\left( b \right){{\left( {\frac{{f\left( a \right)}}{{f\left( b \right)}}} \right)}^{\int_0^1 {y{\rm{d}}Q\left( y \right)} }}} \right\} = \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{f^{ - 1}}\left\{ {f\left( b \right){{\left( {\frac{{f\left( a \right)}}{{f\left( b \right)}}} \right)}^{1 - \int_0^1 {Q\left( y \right){\rm{d}}y} }}} \right\} = \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{f^{ - 1}}\left\{ {f\left( b \right){{\left( {\frac{{f\left( a \right)}}{{f\left( b \right)}}} \right)}^{1 - \mu }}} \right\} = \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{f^{ - 1}}\left\{ {f{{\left( a \right)}^{1 - \mu }}f{{\left( b \right)}^\mu }} \right\}. \end{array} $

下面讨论CQOWG算子的特殊情况.

(1) 当f(x)=kx, k≠0时, φQ, f([a, b])=bμa1-μ, 即CQOWG算子退化为COWG算子.

(2) 当f(x)=ekx, k≠0时,

$ {\varphi _{Q,f}}\left( {\left[ {a,b} \right]} \right) = \mu b + \left( {1 - \mu } \right)a, $

即CQOWG算子退化为COWA算子.

(3) 当f(x)= ${{\rm{e}}^{\frac{x}{k}}}$, k≠0时,

φQ, f([a, b])=1/[(1-μ)/b+μ/b],

即CQOWG算子退化为COWH算子.

(4) 当Q(y)=yr, r>0时,

$ {\varphi _{Q,f}}\left( {\left[ {a,b} \right]} \right) = {f^{ - 1}}\left[ {f{{\left( a \right)}^{\frac{r}{{r + 1}}}}f{{\left( b \right)}^{\frac{r}{{r + 1}}}}} \right]. $

此时, 若r=1, 则有

φQ, f([a, b])=f-1[f(a)1/2f(b)1/2].

r→0, 则有    φQ, f([a, b])=b.

r→+∞, 则有    φQ, f([a, b])=a.

r=k/K, 则有

$ {\varphi _{Q,f}}\left( {\left[ {a,b} \right]} \right) = {f^{ - 1}}\left[ {f{{\left( a \right)}^{\frac{k}{{k + K}}}}f{{\left( b \right)}^{\frac{k}{{k + K}}}}} \right]. $

下面讨论CQOWG算子的性质.

定理7(单调性)   设φ是CQOWG算子, 若a1a2, b1b2, 则对于任意BUM函数Q和导出函数f, 有φQ, f([a1, b1])≤φQ, f([a2, b2]).

证明   分2种情况证明.

(1) 当函数f(x)严格单调递增时, 函数f-1(x)也严格单调递增, 则由a1a2, b1b2f(a1)≤f(a2), f(b1)≤f(b2), 也即有f(a1)1-μf(a2)1-μ, f(b1)μf(b2)μ, 于是

$ f{\left( {{a_1}} \right)^{1 - \mu }}f{\left( {{b_1}} \right)^\mu } \le f{\left( {{a_2}} \right)^{1 - \mu }}f{\left( {{b_2}} \right)^\mu }, $

即有

$ {f^{ - 1}}\left[ {f{{\left( {{a_1}} \right)}^{1 - \mu }}f{{\left( {{b_1}} \right)}^\mu }} \right] \le {f^{ - 1}}\left[ {f{{\left( {{a_2}} \right)}^{1 - \mu }}f{{\left( {{b_2}} \right)}^\mu }} \right], $

所以有

$ {\varphi _{Q,f}}\left( {\left[ {{a_1},{b_1}} \right]} \right) \le {\varphi _{Q,f}}\left( {\left[ {{a_2},{b_2}} \right]} \right). $

(2) 当函数f(x)严格单调递减时, 同理可证

$ {\varphi _{Q,f}}\left( {\left[ {{a_1},{b_1}} \right]} \right) \le {\varphi _{Q,f}}\left( {\left[ {{a_2},{b_2}} \right]} \right). $

定理8(有界性)   设φ是CQOWG算子, 则aφQ, f([a, b])≤b.

证明  注意到当a=b时, φQ, f([a, b])=a, 然后由单调性可得

a=φQ, f([a, a])≤φQ, f([a, b])≤φQ, f([b, b])=b.

定理9(关于Q的单调性)   设φ是CQOWG算子, 若Q1(x), Q2(x)为BUM函数, 且x∈[0, 1], Q1(x)≤Q2(x), 则有

φQ1, f([a, b])≤φQ2, f([a, b]).

证明  令${\mu _1} = \int_0^1 {{Q_1}\left( y \right){\rm{d}}y,{\mu _2} = \int_0^1 {{Q_2}\left( y \right){\rm{d}}y} } $, 则由Q1(x)≤Q2(x)可知, 0≤μ1μ2≤1.

下面分2种情况证明.

(1) 当函数f(x)严格单调递增时, 函数f-1(x)也严格单调递增, 则由abf(a)≤f(b), 进而有$\frac{{f\left( a \right)}}{{f\left( b \right)}} \ge 1$, 即

$ {\left( {\frac{{f\left( b \right)}}{{f\left( a \right)}}} \right)^{1 - {\mu _1}}} \ge {\left( {\frac{{f\left( b \right)}}{{f\left( a \right)}}} \right)^{1 - {\mu _2}}}, $
$ f\left( b \right){\left( {\frac{{f\left( a \right)}}{{f\left( b \right)}}} \right)^{1 - {\mu _1}}} \le f\left( b \right){\left( {\frac{{f\left( a \right)}}{{f\left( b \right)}}} \right)^{1 - {\mu _2}}}, $

即有

$ {f^{ - 1}}\left[ {f\left( b \right){{\left( {\frac{{f\left( a \right)}}{{f\left( b \right)}}} \right)}^{1 - {\mu _1}}}} \right] \le {f^{ - 1}}\left[ {f\left( b \right){{\left( {\frac{{f\left( a \right)}}{{f\left( b \right)}}} \right)}^{1 - {\mu _2}}}} \right], $

于是   φQ1, f([a, b])≤φQ2, f([a, b]).

(2) 当函数f(x)严格单调递减时, 同理可证φQ1, f([a, b])≤φQ2, f([a, b]).

定理10   设f(x)是任意的严格单调连续函数, 若对任意k>0, 有g(x)=f(xk), 则有

$ {\varphi _{Q,g}}\left( {\left[ {a,b} \right]} \right) = {\left( {{\varphi _{Q,f}}\left( {\left[ {{a^k},{b^k}} \right]} \right)} \right)^{1/k}}. $

证明   令y=g(x)=f(xk), 则有

x=g-1(y)=(f-1(y))1/k,

于是有

$ \begin{array}{l} {\varphi _{Q,g}}\left( {\left[ {a,b} \right]} \right) = {g^{ - 1}}\left[ {g{{\left( a \right)}^{1 - \mu }}g{{\left( b \right)}^\mu }} \right] = \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{g^{ - 1}}\left[ {{{\left( {f\left( {{a^k}} \right)} \right)}^{1 - \mu }}{{\left( {f\left( {{b^k}} \right)} \right)}^\mu }} \right] = \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\left( {{f^{ - 1}}\left[ {{{\left( {f\left( {{a^k}} \right)} \right)}^{1 - \mu }}\left( {f\left( {{b^k}} \right)} \right)\mu } \right]} \right)^{1/k}} = \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\left( {{\varphi _{Q,f}}\left( {\left[ {{a^k},{b^k}} \right]} \right)} \right)^{1/k}}. \end{array} $

定理11  设f(x)是任意的严格单调连续函数, g(x)是严格单调连续递增函数, 令h(x)=f(g(x)), 则φQ, h([a, b])=g-1(φQ, f([g(a), g(b)])).

证明   令y=h(x)=f(g(x)), 则有x=h-1(y)=g-1(f-1(y)), 于是

$ \begin{array}{l} {\varphi _{Q,h}}\left( {\left[ {a,b} \right]} \right) = {h^{ - 1}}\left[ {h{{\left( a \right)}^{1 - \mu }}h{{\left( b \right)}^\mu }} \right] = \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{h^{ - 1}}\left[ {{{\left( {f\left( {g\left( a \right)} \right)} \right)}^{1 - \mu }}{{\left( {f\left( {g\left( b \right)} \right)} \right)}^\mu }} \right] = \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{g^{ - 1}}\left\{ {{f^{ - 1}}\left[ {{{\left( {f\left( {g\left( a \right)} \right)} \right)}^{1 - \mu }}{{\left( {f\left( {g\left( b \right)} \right)} \right)}^\mu }} \right]} \right\} = \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{g^{ - 1}}\left( {{\varphi _{Q,f}}\left( {\left[ {g\left( a \right),g\left( b \right)} \right]} \right)} \right). \end{array} $
3 CQOWG算子的orness测度

受文献[25-27]启发, 本文将给出CQOWG算子的orness测度.

定义8   CQOWG算子的orness测度定义为

$ \begin{array}{*{20}{c}} {{\rm{ornes}}{{\rm{s}}_{Q,f}}\left( {\left[ {a,b} \right]} \right) = \frac{{{f^{ - 1}}\left\{ {f\left( b \right){{\left( {\frac{{f\left( a \right)}}{{f\left( b \right)}}} \right)}^{\int_0^1 {\frac{{{\rm{d}}Q\left( y \right)}}{{{\rm{d}}y}}y{\rm{d}}y} }}} \right\} - a}}{{b - a}} = }\\ {\frac{{{f^{ - 1}}\left[ {f{{\left( a \right)}^{1 - \mu }}f{{\left( b \right)}^\mu }} \right] - a}}{{b - a}}.} \end{array} $

显然, 当μ=0时, ornessQ, f([a, b])=0;当μ=1时, ornessQ, f([a, b])=1.

定理12   设φQ, f为任意的CQOWG算子, 则φQ, f([a, b])=a+(b-a)ornessQ, f([a, b]).

定理13   0≤ornessQ, f([a, b])≤1.

定理14   设ornessQ, f([a, b])是CQOWG算子Q, f([(a, b)])的orness测度, 若Q1(x), Q2(x)为BUM函数, 且x∈[0, 1], 有Q1(x)≤Q2(x), 则有ornessQ1, f([a, b] )≤ornessQ2, f([a, b]).

定理15  设f(x)是任意的严格单调连续函数, Q(x)为BUM函数, 若g(x)=k(f(x))c, k≠0, c≠0, 则φQ, g([a, b])=Q, f([a, b]), ornessQ, g([a, b])=ornessQ, f([a, b]).

证明   令y=g(x)=k(f(x))c, 则有

$x = {g^{ - 1}}y = {f^{ - 1}}\left( {{{\left( {\frac{y}{k}} \right)}^{1/c}}} \right)$, 于是,

$ \begin{array}{l} {\phi _{Q,g}}\left( {\left[ {a,b} \right]} \right) = {g^{ - 1}}\left[ {g{{\left( a \right)}^{1 - \mu }}g{{\left( b \right)}^\mu }} \right] = \\ \;\;\;\;\;\;\;\;{g^{ - 1}}\left[ {{{\left( {k{{\left( {f\left( a \right)} \right)}^c}} \right)}^{1 - \mu }}{{\left( {k{{\left( {f\left( b \right)} \right)}^c}} \right)}^\mu }} \right] = \\ \;\;\;\;\;\;\;\;{g^{ - 1}}\left[ {k{{\left( {f\left( a \right)} \right)}^{c\left( {1 - \mu } \right)}}{{\left( {f\left( b \right)} \right)}^{c\mu }}} \right] = \\ \;\;\;\;\;\;\;\;{f^{ - 1}}\left[ {{{\left( {\frac{{k{{\left( {f\left( a \right)} \right)}^{c\left( {1 - \mu } \right)}}{{\left( {f\left( b \right)} \right)}^{c\mu }}}}{k}} \right)}^{1/c}}} \right] = \\ \;\;\;\;\;\;\;\;{f^{ - 1}}\left[ {{{\left( {f\left( a \right)} \right)}^{1/\mu }}{{\left( {f\left( b \right)} \right)}^\mu }} \right] = {\phi _{Q,f}}\left( {\left[ {a,b} \right]} \right). \end{array} $

由CQOWG算子的orness测度定义可知,

ornessQ, g([a, b])=ornessQ, f([a, b]).

4 CQOWG算子的推广

CQOWG算子可以对单个连续区间数进行集成, 但不能集成多个连续区间数, 为此对其进行推广, 使之可以集合成2个或2个以上的连续区间数.

定义9   设[ai, bi](i=1, 2, …, n)为一组连续区间数, w=(w1, w2, …, wn)为加权向量, 且wi≥0, i=1, 2, …, n, $\sum\limits_{j = 1}^n {{w_j}} = 1$, 若函数γnR+, $ {\gamma _w}\left( {\left[ {{a_1},{b_1}} \right],\left[ {{a_{2,}}{b_2}} \right],...,\left[ {{a_n},{b_n}} \right]} \right) = {\prod\limits_{i = 1}^n {\left( {{\varphi _{Q,f}}\left( {\left[ {{a_i},{b_i}} \right]} \right)} \right)} ^{{w_i}}}$则称γ为加权连续QOWG算子, 简称WCQOWG算子, 其中φ为CQOWG算子.

不难证明, WCQOWG算子具有下列性质:

定理16  设[ai, bi](i=1, 2, …, n)为一组连续区间数, w =(w1, w2, …, wn)为加权向量, 且wi≥0, i=1, 2, …, n, $\sum\limits_{j = 1}^n {{w_i}} = 1$, 则

(1) 幂等性

ai=a, bi=b(i=1, 2, …, n), 则

γw([a1, b1], [a2, b2], …, [an, bn])=φQ, f([a, b]).

(2) 有界性

$ \mathop {\min }\limits_i \left\{ {{a_i}} \right\} \le {\gamma _w}\left( {\left[ {{a_1},{b_1}} \right],\left[ {{a_2},{b_2}} \right], \cdots ,\left[ {{a_n},{b_n}} \right]} \right) \le \mathop {\max }\limits_i \left\{ {{b_i}} \right\}. $

(3) 单调性

设[ci, di](i=1, 2, …, n)为另一组连续区间数, 若aici, bidi(i=1, 2, …, n), 则

γw([a1, b1], [a2, b2], …, [an, bn])≤γw([c1, d1], [c2, d2], …, [cn, dn]).

定义10   设[ai, bi](i=1, 2, …, n)为一组连续区间数, w=(w1, w2, …, wn)为加权向量, 且wj≥0, j=1, 2, …, n, $\sum\limits_{j = 1}^n {{w_j}} = 1$, 若函数

$ \eta :{\Omega ^n} \to {R^ + }, $
$ \begin{array}{*{20}{c}} {{\eta _\mathit{\boldsymbol{w}}}\left( {\left[ {{a_1},{b_1}} \right],\left[ {{a_2},{b_2}} \right], \cdots ,\left[ {{a_n},{b_n}} \right]} \right) = }\\ {\prod\limits_{j = 1}^n {{{\left( {{\varphi _{Q,f}}\left( {\left[ {{a_{\sigma \left( j \right)}},{b_{\sigma \left( j \right)}}} \right]} \right)} \right)}^{{w_j}}}} ,} \end{array} $

则称γ为有序加权连续QOWG算子, 简称为OWCQOWG算子, 其中φ为CQOWG算子, φQ, f([aσ(j), bσ(j)])为φQ, f ([ai, bi])(i=1, 2, …, n)中第j大的数.

不难证明, OWCQOWG算子具有下列性质:

定理17  设[ai, bi](i=1, 2, …, n)为一组连续区间数, w =(w1, w2, …, wn)为加权向量, 且wj≥0, j=1, 2, …, n, $\sum\limits_{j = 1}^n {{w_j}} = 1$, 则

(1) 幂等性

ai=a, bi=b(i=1, 2, …, n), 则

ηw([a1, b1]), [a2, b2], …, [an, bn] =φQ, f([a, b]).

(2) 有界性

$ \mathop {\min }\limits_i \left\{ {{a_i}} \right\} \le {\eta _w}\left( {\left[ {{a_1},{b_1}} \right],\left[ {{a_2},{b_2}} \right], \cdots ,\left[ {{a_n},{b_n}} \right]} \right) \le \mathop {\max }\limits_i \left\{ {{b_i}} \right\}. $

(3) 单调性

设[ci, di](i=1, 2, …, n)为另一组连续区间数, 若aici, bidi(i=1, 2, …, n), 则

ηw([a1, b1], [a2, b2], …, [an, bn])≤ηw([c1, d1], [c2, d2], …, [cn, dn]).

(4) 置换不变性

设[ci, di](i=1, 2, …, n)为[ai, bi](i=1, 2, …, n)的任意一个置换, 则

ηw [a1, b1], [a2, b2], …, [an, bn] =

ηw [c1, d1], [c2, d2], …, [cn, dn].

定义11   设[ai, bi](i=1, 2, …, n)为一组连续区间数, 若函数

$ \rho :{\Omega ^n} \to {R^ + }, $
$ \begin{array}{*{20}{c}} {{\rho _\mathit{\boldsymbol{w}}}\left( {\left[ {{a_1},{b_1}} \right],\left[ {{a_2},{b_2}} \right], \cdots ,\left[ {{a_n},{b_n}} \right]} \right) = }\\ {\prod\limits_{j = 1}^n {{{\left( {{\pi _{Q,f}}\left( {\left[ {{a_{\sigma \left( j \right)}},{b_{\sigma \left( j \right)}}} \right]} \right)} \right)}^{{w_j}}}} ,} \end{array} $

则称ρ为组合连续QOWG算子, 简称CCQOWG算子, 其中, (σ(1), σ(2), …, σ(n))是(1, 2, …, n)的一个置换, 满足

$ \begin{array}{l} {\pi _{Q,f}}\left( {\left[ {{a_{\sigma \left( 1 \right)}},{b_{\sigma \left( 1 \right)}}} \right]} \right) \ge \\ \;\;\;\;\;\;\;{\pi _{Q,f}}\left( {\left[ {{a_{\sigma \left( 2 \right)}},{b_{\sigma \left( 2 \right)}}} \right]} \right) \ge \cdots \ge \\ \;\;\;\;\;\;\;{\pi _{Q,f}}\left( {\left[ {{a_{\sigma \left( n \right)}},{b_{\sigma \left( n \right)}}} \right]} \right), \end{array} $

πQ, f([aσ(j), bσ(j)])为集合{(φQ, f([a1, b1]))1),(φQ, f([a2, b2]))2, …,(φQ, f([an, bn]))n}中第j大的数, φ为CQOWG算子, w=(w1, w2, …, wn)为CCQOWG算子相关联的加权向量, 且wj≥0, j=1, 2, …, n, $ \sum\limits_{j = 1}^n {{w_j}} = 1$, 而ω=(ω1, ω2, …, ωn)为数据组[ai, bi](i=1, 2, …, n)的加权向量, 且ωj≥0, j=1, 2, …, n, $\sum\limits_{j = 1}^n {{w_j}} = 1$, n为平衡因子.

显然, 当$\mathit{\boldsymbol{w = }}\left( {\frac{1}{n},\frac{1}{n},...,\frac{1}{n},} \right)$时, CCQOWG算子退化为WCQOWG算子; 当$\mathit{\boldsymbol{w = }}\left( {\frac{1}{n},\frac{1}{n},...,\frac{1}{n},} \right)$时, CCQOWG算子退化为OWCQOWG算子.

5 决策应用

在使用COWG算子进行区间数信息集成的过程中, 决策者既可以通过选择不同的生成函数实现对决策结果的调整, 也可通过选择态度参数体现决策的主动性, 因此COWG算子在区间数信息集成中具有独特的理论和应用优势.下面提出基于CQOWG算子的区间数多属性群决策方法.

X ={x1, x2, …, xm}为备选方案集, 属性集为U={u1, u2, …, un}, ω=(ω1, ω2, …, ωn)为属性权重向量, 且ωj≥0, j=1, 2, …, n, $\sum\limits_{j = 1}^n {{w_j}} = 1$.专家集合为D ={d1, d2, …, dt}, μ=(μ1, μ2, …, μt)为专家权重向量, 且μj≥0, j=1, 2, …, t, $\sum\limits_{j = 1}^t {{\mu _j}} = 1$.专家dk对方案xi按属性uj进行测度, 得到属性值为连续区间数aij(k)=[aij(k)-, aij(k)+], 于是得到专家dk的连续区间数决策矩阵M(k)=(aij(k))mn.由于专家可能来自不同的领域, 其知识结构、实践经验、表达能力以及个人偏好等均不相同, 因此给出的决策矩阵也不相同, 为此通过选取适当的生成函数和态度参数, 使用CQOWG算子可将各专家决策矩阵集结成群体决策矩阵Z=(zij)mn.然后, 由群体决策矩阵求出方案的综合属性值, 从而实现方案的择优排序.具体决策步骤如下:

步骤1   设决策者dk给出的方案xi在属性uj下的测度为连续区间数aij(k)=[aij(k)-, aij(k)+], 于是得到连续区间数决策矩阵M(k)=(aij(k))mn, k=1, 2, …, t, i=1, 2, …, m, j=1, 2, …, n.

步骤2   由于属性可以分为效益型I1和成本型I2两类, 需要将决策矩阵M(k)=(aij(k))mn规范为R(k)=(rij(k))mn, rij(k)=[rij(k)-, rij(k)+], 其中[28],

$ \begin{array}{l} r_{ij}^{\left( k \right) - } = \frac{{a_{ij}^{\left( k \right) - }}}{{\sqrt {\sum\limits_{i = 1}^m {{{\left( {a_{ij}^{\left( k \right) + }} \right)}^2}} } }},r_{ij}^{\left( k \right) + } = \frac{{a_{ij}^{\left( k \right) + }}}{{\sqrt {\sum\limits_{i = 1}^m {{{\left( {a_{ij}^{\left( k \right) - }} \right)}^2}} } }},\\ \;\;\;\;\;\;j \in {I_1},i = 1,2, \cdots ,m; \end{array} $
$ \begin{array}{l} r_{ij}^{\left( k \right) - } = \frac{{1/a_{ij}^{\left( k \right) + }}}{{\sqrt {\sum\limits_{i = 1}^m {{{\left( {1/a_{ij}^{\left( k \right) - }} \right)}^2}} } }},r_{ij}^{\left( k \right) + } = \frac{{1/a_{ij}^{\left( k \right) - }}}{{\sqrt {\sum\limits_{i = 1}^m {{{\left( {a_{ij}^{\left( k \right) + }} \right)}^2}} } }},\\ \;\;\;\;\;\;j \in {I_2},i = 1,2, \cdots ,m. \end{array} $

步骤3   利用CCQOWG算子, 将t个连续区间数决策矩阵集成为综合决策矩阵Z=(zij)mn, 其中,

$ \begin{array}{l} {z_{ij}} = \\ {\rho _\mathit{\boldsymbol{w}}}\left( {\left[ {r_{ij}^{\left( 1 \right) - },r_{ij}^{\left( 1 \right) + }} \right],\left[ {r_{ij}^{\left( 2 \right) - },r_{ij}^{\left( 2 \right) + }} \right], \cdots ,\left[ {r_{ij}^{\left( t \right) - },r_{ij}^{\left( t \right) + }} \right]} \right) = \\ \prod\limits_{k = 1}^t {{{\left( {{\pi _{Q,f}}\left( {\left[ {r_{ij}^{\sigma \left( k \right) - },r_{ij}^{\sigma \left( k \right) + }} \right]} \right)} \right)}^{{w_k}}}} ,\\ i = 1,2, \cdots ,m,j = 1,2, \cdots ,n. \end{array} $

步骤4  对综合决策矩阵Z=(zij)mn进行集成, 得到每个方案的综合属性值${z_i}\left( \mathit{\boldsymbol{\omega }} \right) = \prod\limits_{j = 1}^n {z_{i{j^j}}^\omega } $,i=1,2,…,m.

步骤5  根据方案的综合属性值zi(ω)(i=1, 2, …, m)实现方案{x1, x2, …, xm}的择优排序.

例1[25]  某投资银行要选择一家企业进行投资, 现有4家企业{x1, x2, x3, x4}可供选择, 决策者通过4个属性指标来评价投资价值, 即u1:投资收益和负税率; u2:投资净输出率; u3:国际收益率; u4:环境污染程度, 其中属性u4为成本型指标, 其他属性为效益型指标, 属性权重向量为(0.30, 0.35, 0.15, 0.20).经过3位专家{d1, d2, d3}的评估, 建立了区间数决策矩阵M(k)=(aij(k))4×4, k=1, 2, 3, 专家权重向量为(0.4, 0.3, 0.3).下面根据专家提供的决策矩阵, 评价这4家企业的投资价值, 为该银行决策提供参考.

步骤1  建立区间数决策矩阵, 见表 1~表 3.

表 1 决策者d1给出的决策矩阵M(1) Table 1 Decision matrix M(1)given by decision maker d1
表 2 决策者d2给出的决策矩阵M(2) Table 2 Decision matrix M(2)given by decision maker d2
表 3 决策者d3给出的决策矩阵M(3) Table 3 Decision matrix M(3)given by decision maker d3

步骤2  将区间数决策矩阵M(k)规范化, 得到规范化决策矩阵R(k)(k=1, 2, 3).

$ \begin{array}{l} {\mathit{\boldsymbol{R}}^{\left( 1 \right)}} = \left( {\begin{array}{*{20}{c}} {\left[ {0.2537,0.5304} \right]}&{\left[ {0.3936,0.5704} \right]}\\ {\left[ {0.5286,0.8375} \right]}&{\left[ {0.4972,0.6944} \right]}\\ {\left[ {0.3594,0.6700} \right]}&{\left[ {0.3522,0.5208} \right]}\\ {\left[ {0.3171,0.5584} \right]}&{\left[ {0.4143,0.5952} \right]} \end{array}} \right.\\ \;\;\;\;\;\;\;\;\;\left. {\begin{array}{*{20}{c}} {\left[ {0.4135,0.5904} \right]}&{\left[ {0.4488,0.5089} \right]}\\ {\left[ {0.3675,0.5904} \right]}&{\left[ {0.3876,0.4214} \right]}\\ {\left[ {0.4135,0.6467} \right]}&{\left[ {0.5443,0.5994} \right]}\\ {\left[ {0.4365,0.6186} \right]}&{\left[ {0.5016,0.5619} \right]} \end{array}} \right), \end{array} $
$ \begin{array}{l} {\mathit{\boldsymbol{R}}^{\left( 2 \right)}} = \left( {\begin{array}{*{20}{c}} {\left[ {0.2229,0.4761} \right]}&{\left[ {0.4180,0.6262} \right]}\\ {\left[ {0.4661,0.8122} \right]}&{\left[ {0.4180,0.7623} \right]}\\ {\left[ {0.4053,0.6721} \right]}&{\left[ {0.3762,0.5445} \right]}\\ {\left[ {0.3040,0.7562} \right]}&{\left[ {0.3135,0.6534} \right]} \end{array}} \right.\\ \;\;\;\;\;\;\;\;\;\left. {\begin{array}{*{20}{c}} {\left[ {0.3371,0.6424} \right]}&{\left[ {0.4343,0.5522} \right]}\\ {\left[ {0.3852,0.5931} \right]}&{\left[ {0.3536,0.4314} \right]}\\ {\left[ {0.4334,0.5931} \right]}&{\left[ {0.4951,0.6135} \right]}\\ {\left[ {0.4575,0.6228} \right]}&{\left[ {0.4951,0.6135} \right]} \end{array}} \right), \end{array} $
$ \begin{array}{l} {\mathit{\boldsymbol{R}}^{\left( 3 \right)}} = \left( {\begin{array}{*{20}{c}} {\left[ {0.2810,0.7653} \right]}&{\left[ {0.3812,0.5762} \right]}\\ {\left[ {0.4683,0.4917} \right]}&{\left[ {0.4036,0.5238} \right]}\\ {\left[ {0.2810,0.6597} \right]}&{\left[ {0.4260,0.6024} \right]}\\ {\left[ {0.3559,0.5806} \right]}&{\left[ {0.4933,0.6285} \right]} \end{array}} \right.\\ \;\;\;\;\;\;\;\;\;\left. {\begin{array}{*{20}{c}} {\left[ {0.4531,0.5897} \right]}&{\left[ {0.4961,0.5614} \right]}\\ {\left[ {0.2719,0.5897} \right]}&{\left[ {0.3898,0.4649} \right]}\\ {\left[ {0.4078,0.5897} \right]}&{\left[ {0.4787,0.5510} \right]}\\ {\left[ {0.4531,0.7021} \right]}&{\left[ {0.4625,0.5950} \right]} \end{array}} \right). \end{array} $

步骤3  利用CCQOWG算子, 求出综合决策矩阵:

$ \mathit{\boldsymbol{Z}} = \left( {\begin{array}{*{20}{c}} {0.4441}&{0.5588}&{0.5555}&{0.5432}\\ {0.6973}&{0.6081}&{0.5255}&{0.4434}\\ {0.5808}&{0.5217}&{0.5603}&{0.5863}\\ {0.5617}&{0.5575}&{0.5984}&{0.5886} \end{array}} \right). $

其中, $Q\left( x \right) = \sqrt x $, f(x)=x2, CCQOWG算子的相关联加权向量为w=(0.067, 0.666, 0.267), 专家权重向量为(0.4, 0.3, 0.3).

步骤4  方案综合属性值分别为

z1(ω)=0.518 2, z2(ω)=0.581 9,

z3(ω)=0.557 4, z4(ω)=0.570 9,

其中, 属性权重向量ω=(0.30, 0.35, 0.15, 0.20).

步骤5  根据方案综合属性值得到方案的排序为x2x4x3x1, 即方案x2最优.

使用文献[25]中的CCQOWA算子, 计算得各方案综合属性值为z1(ω)=0.572 7, z2(ω)=0.654 9, z3(ω)=0.607 6, z4(ω)=0.622 0, 因此方案排序为x2x4x3x1.

尽管各方案的综合属性值与使用本文中的CCQOWG算子得到的综合属性值不同, 但是方案的排序完全相同.这在一定程度上说明了使用本文的CCQOWG算子进行决策是有效的.

6 结语

首先, 通过拓展QOWG算子, 提出了连续区间QOWG算子, 拓展了QOWG算子的应用范围, 研究了CQOWG算子的特殊情况和性质.其次, 定义了CQOWG算子的orness测度, 研究了orness测度的性质.然后, 定义了WCQOWG算子、OWCQOWG算子以及CCQOWG算子, 使得CQOWG算子可以处理多个连续区间数的集成问题, 讨论了这些算子的性质.最后, 提出了基于连续QOWG算子的多属性群决策方法, 并通过决策实例说明了其可行性和有效性.

参考文献
[1] HARASNYI J C. Cardinal welfare, individualistic ethics, and interpersonal comparisons of utility[J]. Journal of Political Economy, 1955, 63: 309–321. DOI:10.1086/257678
[2] ACZEL J, ALSINA C. Synthesizing judgement:A functional equation approach[J]. Mathematical Modelling, 1987(9): 311–320.
[3] YAGER R R. On ordered weighted averaging aggregation operators in multicriteria decision making[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1988, 18: 183–190. DOI:10.1109/21.87068
[4] HERRERA F, HERRERA V E, CHICLANA F. Multiperson decision-making based on multiplicative preference relations[J]. European Journal of Operational Research, 2001, 129: 372–385. DOI:10.1016/S0377-2217(99)00197-6
[5] 陈华友, 刘春林, 盛昭翰. IOWHA算子及其在组合预测中的应用[J]. 中国管理科学, 2004, 12(5): 35–40.
CHEN H Y, LIU C L, SHENG Z H. Induced ordered weighted harmonic averaging(IOWHA) operator and its application to combination forecasting method[J]. Chinese Journal of Management Science, 2004, 12(5): 35–40.
[6] YAGER R R. Generalized OWA aggregation operators[J]. Fuzzy Optimization and Decision Making, 2004(3): 93–107.
[7] FODOR J, MARICHAL J L, ROUBENS M. Characterization of the ordered weighted averaging operators[J]. IEEE Transactions on Fuzzy Systems, 1995, 3(2): 236–240. DOI:10.1109/91.388176
[8] 刘卫锋, 常娟, 何霞. 广义毕达哥拉斯模糊集成算子及其决策应用[J]. 控制与决策, 2016, 31(12): 2280–2286.
LIU W F, CHANG J, HE X. Generalized Pythagorean fuzzy aggregation operators and applications in decision making[J]. Control and Decision, 2016, 31(12): 2280–2286.
[9] XU Z S, DA Q L. The certain OWA operator[J]. International Journal of Intelligent Systems, 2002, 17: 469–483.
[10] XU Y J, DA Q L. Approach to obtaining weights of uncertain ordered weighted geometric averaging operator[J]. Journal of Southeast University(English Edition), 2008, 24(1): 110–113.
[11] XU Z S, CAI X Q. Uncertain power average operators for aggregating interval fuzzy preference relations[J]. Group Decision and Negotiation, 2012, 21: 381–397. DOI:10.1007/s10726-010-9213-7
[12] MERIGÍ J M, GIL-LAFUENTE A M, MARTORELL O. Uncertain induced aggregation operators and its application in tourism management[J]. Expert Systems with Application, 2012, 39: 869–880. DOI:10.1016/j.eswa.2011.07.085
[13] MERIGÍJ M, CASANOVAS M. The uncertain induced quasi-arithmetic OWA operator[J]. International Journal of Intelligent Systems, 2011, 26: 1–24. DOI:10.1002/int.v26:1
[14] RAN L G, WEI G W. Uncertain prioritized operators and their application to multiple attribute group decision making[J]. Technological and Economic Development of Economy, 2015, 21(1): 118–139. DOI:10.3846/20294913.2014.979454
[15] YAGER R R. OWA aggregation over a continuous interval argument with applications to decision making[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 2004, 34: 1952–1963. DOI:10.1109/TSMCB.2004.831154
[16] YAGER R R, XU Z S. The continuous ordered weighted geometric operator and its application to decision making[J]. Fuzzy Sets and Systems, 2006, 157: 1393–1402. DOI:10.1016/j.fss.2005.12.001
[17] XU Z S. A C-OWA operator-Based approach to decision making with interval fuzzy preference relation[J]. Intenational Journal of Intelligent Systems, 2006, 21: 1289–1298. DOI:10.1002/(ISSN)1098-111X
[18] 徐泽水. 拓展的C-OWA算子及其在不确定多属性决策中的应用[J]. 系统工程理论与实践, 2005, 25(11): 7–13.
XU Z S. Extended C-OWA operators and their use in uncertain multi-attribute decision making[J]. Systems Engineering Theory and Practice, 2005, 25(11): 7–13. DOI:10.3321/j.issn:1000-6788.2005.11.002
[19] 龚艳冰, 梁雪春. 基于模糊C-OWA算子的模糊多属性决策方法[J]. 系统工程与电子技术, 2008, 30(8): 1478–1480.
GONG Y B, LIANG X C. Fuzzy multi-attribute decision making method based on fuzzy C-OWA operator[J]. Systems Engineering and Electronics, 2008, 30(8): 1478–1480.
[20] 汪新凡. 基于CC-OWG算子的区间数多属性群决策方法[J]. 湖南工业大学学报, 2009, 23(1): 28–33.
WANG X F. Group decision making method of interval multiple attribute based on CC-OWG operator[J]. Journal of Hunan University of Technology, 2009, 23(1): 28–33.
[21] 丁德臣, 龚艳冰, 何建敏. 基于模糊C-OWG算子的模糊DEA模型求解[J]. 模糊系统与数学, 2009, 23(2): 131–135.
DING D C, GONG Y B, HE J M. Solution of fuzzy DEA model based on fuzzy C-OWG operator[J]. Fuzzy Systems and Mathematics, 2009, 23(2): 131–135.
[22] WU J, LI J C, DUAN W Q. The induced continuous ordered weighted geometric operator and their application in group decision making[J]. Computer and Industrial Engineering, 2009, 56: 1545–1552. DOI:10.1016/j.cie.2008.09.041
[23] 陈华友, 刘金培, 王慧. 一类连续区间数据的有序加权调和(C-OWH)平均算子及其应用[J]. 系统工程理论与实践, 2008, 28(7): 86–92.
CHEN H Y, LIU J P, WANG H. A class of continuous ordered weighted harmonic(C-OWH) averaging operators for interval argument and its applications[J]. Systems Engineering Theory and Practice, 2008, 28(7): 86–92.
[24] ZHOU L G, CHEN H Y. Continuous generalized OWA operator and its application to decision making[J]. Fuzzy Sets and Systems, 2011, 168: 18–34. DOI:10.1016/j.fss.2010.05.009
[25] LIU J P, LIN S, CHEN H Y, et al. The continuous Quasi-OWA operator and its application to group decision making[J]. Group Decision and Negotiation, 2013, 22: 715–738. DOI:10.1007/s10726-012-9288-4
[26] LIU X W. An orness measure for quasi-arithmetic means[J]. IEEE Transactions on Fuzzy Systems, 2006, 14(6): 837–848. DOI:10.1109/TFUZZ.2006.879990
[27] LIU X W. The orness measures for two compound quasi-arithmetic mean aggregation operators[J]. International Journal of Approximate Reasoning, 2010, 51: 305–334. DOI:10.1016/j.ijar.2009.10.003
[28] 徐泽水, 孙在东. 一类不确定型多属性决策问题的排序方法[J]. 管理科学学报, 2002, 5(3): 35–39.
XU Z S, SUN Z D. Priority method for a kind of multi-attribute decision-making problems[J]. Journal of Management Sciences in China, 2002, 5(3): 35–39.