文章快速检索     高级检索
  浙江大学学报(理学版)  2018, Vol. 45 Issue (2): 147-155  DOI:10.3785/j.issn.1008-9497.2018.02.004
0

引用本文 [复制中英文]

申婷婷, 贺素香. 解互补约束优化问题的一种新的光滑化近似方法[J]. 浙江大学学报(理学版), 2018, 45(2): 147-155. DOI: 10.3785/j.issn.1008-9497.2018.02.004.
[复制中文]
SHEN Tingting, HE Suxiang. A new smoothing method for mathematical programs with complementarity constraints[J]. Journal of Zhejiang University(Science Edition), 2018, 45(2): 147-155. DOI: 10.3785/j.issn.1008-9497.2018.02.004.
[复制英文]

基金项目

国家自然科学基金资助项目(11671183)

作者简介

申婷婷(1992-), ORCID:http://orcid.org/0000-0001-6285-849X, 女, 硕士研究生, 主要从事非线性优化理论与算法研究

通信作者

贺素香, ORCID:http://orcid.org/0000-0001-5800-9057, E-mail:hesux@whut.edu.cn

文章历史

收稿日期:2017-01-16
解互补约束优化问题的一种新的光滑化近似方法
申婷婷 , 贺素香     
武汉理工大学 理学院, 湖北 武汉 430070
摘要: 互补约束优化问题应用十分广泛.利用Sigmoid函数的积分函数提出了一种新的光滑化近似算法,将互补约束优化问题转化为一般的非线性规划近似问题,通过求解近似问题的一系列光滑子问题得到原问题的近似解.在线性独立约束规范和其他一些较弱的假设条件下:无须上水平严格互补和渐进弱非退化,证明了光滑近似问题的KKT稳定点序列收敛于原问题的C-稳定点.进而考虑弱二阶必要条件,证明了上述KKT稳定点序列收敛于原问题的S-稳定点.最后,设计了相应算法,并对MacMPEC测试题库中的一些算例进行了数值实验,将得到的结果与其他算法的结果进行比较,显示本方法是有效的.
关键词: 线性独立约束规范    C-稳定点    S-稳定点    互补约束优化问题    
A new smoothing method for mathematical programs with complementarity constraints
SHEN Tingting, HE Suxiang     
Science College, Wuhan University of Technology, Wuhan 430070, China
Abstract: Mathematical programs with complementarity constraints (MPCC) have very wide application in many areas. In this paper, we present a smoothing method based on the integral of the Sigmoid function. The original MPCC is reformulated into a standard smooth optimization model. Then, we obtain an approximate solution of MPCC by solving a series of the smooth sub-problems. It is proved that any accumulation point of the KKT stationary points sequence is a C-stationary point of original MPCC under the linear independence constraints qualification (LICQ) and the other weaker assumptions, without upper level strict complementarity (ULSC) and asymptotically weakly nondegenerate condition (AWN). Furthermore, such an accumulation point can be proved to be S-stationary point under the weak second-order necessary condition. At last, we present the algorithm and test its efficiency with some problems in MacMPEC database. Numerical results indicate that the proposed smoothing method is efficient comparing with other related algorithms.
Key words: linear independence constraints qualification    C-stationary point    S-stationary point    mathematical programs with complementarity constraints    
0 引言

主要研究以下一般形式的互补约束优化问题(MPCC):

$ \begin{array}{l} \min \;\;f\left( x \right)\\ {\rm{s}}.\;{\rm{t}}.\;\;\;g\left( x \right) \leqslant 0,h\left( x \right) = 0,\\ \;\;\;\;\;\;\;\;G\left( x \right) \geqslant 0,H\left( x \right) \geqslant 0,\\ \;\;\;\;\;\;\;\;G{\left( x \right)^{\rm{T}}}H\left( x \right) = 0. \end{array} $ (1)

其中,fRnR, gRnRm, hRnRp, G, HRnRl为二阶连续可微函数, g(x)≤0, h(x)=0称为一般约束条件, G(x)≥0, H(x)≥0, G(x)TH(x)=0称为互补约束条件.

互补约束优化是一类重要的均衡约束优化问题(MPEC), 常用于经济学、工程学、交通运输科学、均衡博弈、数学规划理论等领域[1].为此,众多学者开展了对互补约束优化问题的深入研究.然而, 求解互补约束优化问题是比较困难的.由于互补约束条件的存在, 任何可行点都无法满足非线性规划约束规范的要求, 比如线性独立约束规范(LICQ)、M-F约束规范(MFCQ), 因此求解非线性规划问题的标准理论和算法均不适用于此问题; 此外, 因其可行域复杂, 不具有连通性、闭性和凸性等性质,所以不同于一般的约束优化问题.目前,已有许多解决MPCC的方法, 如光滑化方法[2-6]、序列二次规划法[7-8]和松弛法等[9-11].

光滑化方法是应用最广泛的一类求解问题(1)的方法, 该方法通过引入光滑参数, 用一个光滑函数构造等式或不等式约束近似问题(1)的互补约束条件, 将问题(1)转化为一般的非线性规划近似问题.通过解近似问题的一系列光滑子问题, 得到问题(1)的最优解或某种类型的稳定点.现有的光滑化算法主要利用扰动的F-B函数和最值函数的光滑函数近似互补约束条件.例如, 文献[2]给出了扰动的F-B函数:

$ \varphi \left( {a,b,\varepsilon } \right) = a + b - \sqrt {{a^2} + {b^2} + \varepsilon } , $

其中,a, b为常数, ε为光滑参数, 利用该函数构造等式约束条件近似问题(1)的互补约束条件, 在互补约束优化问题的线性独立约束规范(MPCC-LICQ)和渐进弱非退化条件(AWN)下, 得到了满足二阶必要条件的近似问题稳定点序列收敛于问题(1)的B-稳定点.文献[3]利用最小值函数的光滑近似函数

$ {\varphi _\varepsilon }\left( {a,b} \right) = - \varepsilon \ln \left( {\exp \left( { - a/\varepsilon } \right) + \exp \left( { - b/\varepsilon } \right)} \right), $

得到了问题(1)的光滑近似问题.在MPCC-LICQ和上水平严格互补条件(ULSC)下, 证明了近似问题满足二阶必要条件的稳定点序列收敛于问题(1)的B-稳定点.文献[4]利用绝对值函数的光滑近似函数, 将互补约束条件中的G(z)TH(z)=0用光滑不等式做近似替换, 在较弱的约束规范MPEC-MFCQ下, 证明了近似问题的任意稳定点序列的聚点收敛于问题(1)的C-稳定点; 若加上额外假设, 上述聚点收敛于问题(1)的M稳定点, 甚至S稳定点.其他更为简单有效的方法有待进一步研究.

基于具有良好性质的光滑函数[12], 即Sigmoid函数的积分函数, 将互补约束条件光滑化, 利用这一新的光滑化方法, 得到了问题(1)的形式简单的光滑近似问题.当iI00(x)={i|Gi(x)=0, Hi(x)=0}, 其中当x为问题(1)的任意可行点时, 给出了不同于AWN和ULSC的假设条件:

$ \mathop {\lim }\limits_{{x_k} \to \bar x,\alpha \to 0} \left[ {\left( {{G_i}\left( {{x_k}} \right) - {H_i}\left( {{x_k}} \right)} \right)/\alpha } \right] < \infty ,i \in {I_{00}}\left( {\bar x} \right), $ (2)

其中α>0为光滑参数.由此对得到的近似问题的稳定点序列{xk}的收敛性做了详细研究.当α趋于0时, 在MPCC-LICQ和较弱的假设条件(2)下, 证明了光滑近似问题的KKT稳定点序列收敛于原问题的C-稳定点.进一步, 若考虑弱二阶必要条件, 上述KKT稳定点序列则收敛于原问题的S-稳定点.此外, 文献[2-3, 5-6]仅对稳定点的收敛性给出理论证明, 并没有对相应算法进行数值实验.基于此, 本文最后设计了一个光滑化算法, 对MacMPEC测试题库中的一些算例进行一系列数值实验, 在相同的初始条件下, 将得到的结果与文献[4]中算法的结果进行比较, 以验证本文算法的有效性.

1 基础知识

设问题(1)的可行域为F, 对xF, 定义以下指标集:

$ {I_{0 + }}\left( {\bar x} \right) = \left\{ {i\left| {{G_i}\left( {\bar x} \right) = 0,{H_i}\left( {\bar x} \right) > 0} \right.} \right\}, $
$ {I_{00}}\left( {\bar x} \right) = \left\{ {i\left| {{G_i}\left( {\bar x} \right) = 0,{H_i}\left( {\bar x} \right) = 0} \right.} \right\}, $
$ {I_{ + 0}}\left( {\bar x} \right) = \left\{ {i\left| {{G_i}\left( {\bar x} \right) > 0,{H_i}\left( {\bar x} \right) = 0} \right.} \right\}. $

定义1 如果向量组:{$\nabla $gi(x), iIg(x)}, {$\nabla $hi(x), i=1, 2, …, p}, {$\nabla $Gi(x), I00(x)∪I0+(x)}, {$\nabla $Hi(x), iI00(x)∪I+0(x)}线性无关, 其中Ig(x)={igi(x)=0},则称问题(1)在可行点x处满足互补约束优化问题线性独立约束规范(MPCC-LICQ).

定义2 设xF, λ Rm, μ Rp, u , v Rl, 称

$ \begin{array}{l} L\left( {x,\mathit{\boldsymbol{\lambda }},\mathit{\boldsymbol{\mu }},\mathit{\boldsymbol{u}},\mathit{\boldsymbol{v}}} \right) = f\left( x \right) + {\mathit{\boldsymbol{\lambda }}^{\rm{T}}}g\left( x \right) + {\mathit{\boldsymbol{\mu }}^{\rm{T}}}h\left( x \right) - \\ \;\;\;\;\;\;{\mathit{\boldsymbol{u}}^{\rm{T}}}G\left( x \right) - {\mathit{\boldsymbol{v}}^{\rm{T}}}H\left( x \right) \end{array} $

为问题(1)在x处对应乘子向量λ , μ , u , v 的拉格朗日函数.则有

$ \begin{array}{*{20}{c}} {{\nabla _x}L\left( {x,\mathit{\boldsymbol{\lambda }},\mathit{\boldsymbol{\mu }},\mathit{\boldsymbol{u}},\mathit{\boldsymbol{v}}} \right) = \nabla f\left( x \right) + \nabla g{{\left( x \right)}^{\rm{T}}}\mathit{\boldsymbol{\lambda }} + }\\ {\nabla h{{\left( x \right)}^{\rm{T}}}\mathit{\boldsymbol{\mu }} - \nabla G{{\left( x \right)}^{\rm{T}}}\mathit{\boldsymbol{u}} - \nabla H{{\left( x \right)}^{\rm{T}}}\mathit{\boldsymbol{v}}.} \end{array} $

定义3 设xF, 若存在乘子向量λ Rm, μ Rp, u , v Rl,使得

$ \begin{array}{l} {\nabla _x}L\left( {\bar x,\mathit{\boldsymbol{\lambda }},\mathit{\boldsymbol{\mu }},\mathit{\boldsymbol{u}},\mathit{\boldsymbol{v}}} \right) = 0,\mathit{\boldsymbol{\lambda }} \geqslant 0,{\mathit{\boldsymbol{\lambda }}^{\rm{T}}}g\left( {\tilde x} \right) = 0,\\ {u_i} = 0,i \in {I_{ + 0}}\left( {\bar x} \right),\;\;\;\;{v_i} = 0,i \in {I_{ + 0}}\left( {\bar x} \right), \end{array} $

则称x是问题(1)的W-稳定点.

(1) 如果xW-稳定点,并且uivi≥0, iI00(x), 则称x是问题(1)的C-稳定点.

(2) 如果xW-稳定点,并且ui>0, vi>0或uivi=0, uivi=0, iI00(x), 则称x是问题(1)的M-稳定点.

(3) 如果xW-稳定点,并且ui≥0, vi≥0, iI00(x), 则称x是问题(1)的S-稳定点.

2 新的光滑化近似函数及性质

考虑互补约束条件

$ a \geqslant 0,b \geqslant 0,ab = 0. $ (3)

可以证明式(3)等价于

$ \min \left\{ {a,b} \right\} = 0. $ (4)

进一步, 可以证明式(4)等价于

$ a - {\left( {a - b} \right)_ + } = 0, $ (5)

其中,(a-b)+=max{a-b, 0}.

由文献[12]知,非光滑函数

$ {\left( x \right)_ + } = \max \left( {x,0} \right), $ (6)

可由以下光滑的Sigmoid函数的积分函数近似:

$ p\left( {x,\alpha } \right) = x + \alpha \ln \left( {1 + {{\rm{e}}^{ - \frac{x}{\alpha }}}} \right), $ (7)

其中, x为实数, α为光滑参数, 且α>0.由文献[12], 光滑函数p(x, α)具有以下性质:

引理1 设p(x, α)由式(7)定义, 则有

(ⅰ) p(x, α)关于α递增, 且有

$ {\left( x \right)_ + } \leqslant p\left( {x,\alpha } \right) \leqslant {\left( x \right)_ + } + \alpha \ln 2. $

(ⅱ)当α趋于0时, (x)+p(x, α).

(ⅲ)对任意xRn, α>0, 0≤pα(x, α)≤ln 2.

由引理1, 式(5)可用下式近似表示:

$ a - \max \left\{ {a - b,0} \right\} \approx a - \left( {a - b} \right) - \alpha \ln \left( {1 + {{\rm{e}}^{ - \frac{{a - b}}{\alpha }}}} \right) = 0, $ (8)

即互补约束条件(3)可近似表示为

$ b - \alpha \ln \left( {1 + {{\rm{e}}^{\left( { - \frac{1}{\alpha }} \right)\left( {a - b} \right)}}} \right) = 0. $ (9)

对于α>0, 定义光滑函数Φ(x, α):Rn×R+Rl,

$ \mathit{\Phi }\left( {x,\alpha } \right) = \left( {\begin{array}{*{20}{c}} {{\mathit{\Phi }_1}\left( {x,\alpha } \right)}\\ \vdots \\ {{\mathit{\Phi }_l}\left( {x,\alpha } \right)} \end{array}} \right), $

其中,

$ {\mathit{\Phi }_i}\left( {x,\alpha } \right) = {H_i}\left( x \right) - \alpha \ln \left( {1 + {{\rm{e}}^{ - \frac{1}{\alpha }\left( {{G_i}\left( x \right) - {H_i}\left( x \right)} \right)}}} \right). $ (10)

根据以上分析, 问题(1)中的互补约束条件:

$ G\left( x \right) \geqslant 0,H\left( x \right) \geqslant 0,G{\left( x \right)^{\rm{T}}}H\left( x \right) = 0, $

可由Φ(x, α)=0替换.

于是, 得到问题(1)的一个新的光滑近似问题:

$ \begin{array}{l} \min \;\;\;f\left( x \right),\\ {\rm{s}}.\;{\rm{t}}.\;g\left( x \right) \leqslant 0,h\left( x \right) = 0, \end{array} $ (11)
$ \mathit{\Phi }\left( {x,\alpha } \right) = 0. $

定义近似问题的可行域为Fα, 下面分析近似函数Φ(x, α)的相关性质.

引理2 设Φi(x, α), i=1, 2, …, l, 由式(10)的定义, 则有

(ⅰ)对任意α>0, Φi(x, α)关于x连续可微.

(ⅱ)计算可得Φi(x, α)的梯度,

$ {\nabla _x}{\mathit{\Phi }_i}\left( {x,\alpha } \right) = {\xi _i}\left( {x,\alpha } \right)\nabla {G_i}\left( x \right) + {\eta _i}\left( {x,\alpha } \right)\nabla {H_i}\left( x \right), $ (12)
$ \begin{array}{l} \nabla _x^2{\mathit{\Phi }_i}\left( {x,\alpha } \right) = {\xi _i}\left( {x,\alpha } \right){\nabla ^2}{G_i}\left( x \right) + \\ \;\;\;\;\;\;{\eta _i}\left( {x,\alpha } \right){\nabla ^2}{H_i}\left( x \right) - \frac{1}{\alpha }\left( {{\xi _i}\left( {x,\alpha } \right) - \xi _i^2\left( {x,\alpha } \right)} \right) \times \\ \;\;\;\;\;\;\left( {\nabla {G_i}\left( x \right)\nabla {G_i}{{\left( x \right)}^{\rm{T}}} - \nabla {H_i}\left( x \right)\nabla {G_i}{{\left( x \right)}^{\rm{T}}}} \right) + \\ \;\;\;\;\;\;\frac{1}{\alpha }{\xi _i}\left( {x,\alpha } \right){\eta _i}\left( {x,\alpha } \right) \times \left( {\nabla {G_i}\left( x \right)\nabla {H_i}{{\left( x \right)}^{\rm{T}}} - } \right.\\ \;\;\;\;\;\;\left. {\nabla {H_i}\left( x \right)\nabla {H_i}{{\left( x \right)}^{\rm{T}}}} \right). \end{array} $ (13)

其中,

$ {\xi _i}\left( {x,\alpha } \right) = \frac{{{{\rm{e}}^{\left( { - \frac{1}{\alpha }} \right)\left( {{G_i}\left( x \right) - {H_i}\left( x \right)} \right)}}}}{{1 + {{\rm{e}}^{\left( { - \frac{1}{\alpha }} \right)\left( {{G_i}\left( x \right) - {H_i}\left( x \right)} \right)}}}}, $ (14)
$ {\eta _i}\left( {x,\alpha } \right) = 1 - \frac{{{{\rm{e}}^{\left( { - \frac{1}{\alpha }} \right)\left( {{G_i}\left( x \right) - {H_i}\left( x \right)} \right)}}}}{{1 + {{\rm{e}}^{\left( { - \frac{1}{\alpha }} \right)\left( {{G_i}\left( x \right) - {H_i}\left( x \right)} \right)}}}}, $ (15)

ξi(x, α)∈(0, 1), ηi(x, α)∈(0, 1), ξi(x, α)+ηi(x, α)=1.∀i=1, 2, …, l, ξi(x, α), ηi(x, α)连续可微.

(ⅲ)设xkRn, kN , 且当k→∞时, xkxF, 若对于iI00(x),

$ \mathop {\lim }\limits_{{x_k} \to \bar x,\alpha \to 0} \left[ {\left( {{G_i}\left( {{x_k}} \right) - {H_i}\left( {{x_k}} \right)} \right)/\alpha } \right] < \infty , $

$ \mathop {\lim }\limits_{{x_k} \to \bar x,\alpha \to 0} {\nabla _x}{\mathit{\Phi }_i}\left( {{x_k},\alpha } \right) = {{\bar \xi }_i}\left( {\bar x} \right)\nabla {G_i}\left( {\bar x} \right) + {{\bar \eta }_i}\left( {\bar x} \right)\nabla {H_i}\left( {\bar x} \right), $

其中,

$ {{\bar \xi }_i}\left( {\bar x} \right) = \mathop {\lim }\limits_{{x_k} \to \bar x,\alpha \to 0} {\xi _i}\left( {{x_k},\alpha } \right) \in \left[ {0,1} \right], $
$ {{\bar \eta }_i}\left( {\bar x} \right) = \mathop {\lim }\limits_{{x_k} \to \bar x,\alpha \to 0} {\eta _i}\left( {{x_k},\alpha } \right) \in \left[ {0,1} \right], $
$ {{\bar \xi }_i}\left( {\bar x} \right) + {{\bar \eta }_i}\left( {\bar x} \right) = 1. $

且当iI0+(x)时, ξi(x)=1, ηi(x)=0;当iI+0(x)时, ξi(x)=0, ηi(x)=1;当iI00(x)时, ξi(x)∈(0, 1), ηi(x)∈(0, 1).

证明  (ⅰ)由式(10)中Φi(xk, α)的定义, 可得结论(ⅰ).

(ⅱ)通过计算可得结论(ⅱ).

(ⅲ)由式(14)、(15)可知

$ {{\bar \xi }_i}\left( {\bar x} \right) + {{\bar \eta }_i}\left( {\bar x} \right) = 1,\;\;\;i \in \left\{ {1,2, \cdots ,l} \right\}, $

iI0+(x),

$ \begin{array}{l} {\xi _i}\left( {{x_k},\alpha } \right) = \frac{{{{\rm{e}}^{\left( { - \frac{1}{\alpha }} \right)\left( {{G_i}\left( {{x_k}} \right) - {H_i}\left( {{x_k}} \right)} \right)}}}}{{1 + {{\rm{e}}^{\left( { - \frac{1}{\alpha }} \right)\left( {{G_i}\left( {{x_k}} \right) - {H_i}\left( {{x_k}} \right)} \right)}}}} = \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\frac{1}{{\frac{1}{{{{\rm{e}}^{\left( { - \frac{1}{\alpha }} \right)\left( {{G_i}\left( {{x_k}} \right) - {H_i}\left( {{x_k}} \right)} \right)}}}} + 1}}, \end{array} $
$ \begin{array}{l} {\eta _i}\left( {{x_k},\alpha } \right) = 1 - \frac{{{{\rm{e}}^{\left( { - \frac{1}{\alpha }} \right)\left( {{G_i}\left( {{x_k}} \right) - {H_i}\left( {{x_k}} \right)} \right)}}}}{{1 + {{\rm{e}}^{\left( { - \frac{1}{\alpha }} \right)\left( {{G_i}\left( {{x_k}} \right) - {H_i}\left( {{x_k}} \right)} \right)}}}} = \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\frac{1}{{1 + {{\rm{e}}^{\left( { - \frac{1}{\alpha }} \right)\left( {{G_i}\left( {{x_k}} \right) - {H_i}\left( {{x_k}} \right)} \right)}}}}. \end{array} $

α→0, xkx时, ξi(x)=1, ηi(x)=0.同理, 若iI+0(x), 当α→0, xkx时, ξi(x)=0, ηi(x)=1.

iI00(x), 已知ξi(x), ηi(x)∈[0, 1], ξi(x)+ηi(x)=1.若$\mathop {{\rm{lim}}}\limits_{{x_k} \to \overline x, \alpha \to 0} [({G_i}({x_k})-{H_i}({x_k}))/\alpha] < \infty $

$ \mathop {\lim }\limits_{{x_k} \to \bar x,\alpha \to 0} \left[ {\left( {{G_i}\left( {{x_k}} \right) - {H_i}\left( {{x_k}} \right)} \right)/\alpha } \right] = a \in \left( { - \infty ,\infty } \right), $

那么,

$ {{\bar \xi }_i}\left( {\bar x} \right) = \mathop {\lim }\limits_{{x_k} \to \bar x,\alpha \to 0} {\xi _i}\left( {{x_k},\alpha } \right) = \frac{{\exp \left( { - a} \right)}}{{1 + \exp \left( { - a} \right)}} \ne 0, $
$ \begin{array}{l} {{\bar \eta }_i}\left( {\bar x} \right) = \mathop {\lim }\limits_{{x_k} \to \bar x,\alpha \to 0} {\eta _i}\left( {{x_k},\alpha } \right) = \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;1 - \frac{{\exp \left( { - a} \right)}}{{1 + \exp \left( { - a} \right)}} = \frac{1}{{1 + \exp \left( { - a} \right)}} \ne 0, \end{array} $

所以ξi(x)∈(0, 1), ηi(x)∈(0, 1).故结论(ⅲ)成立.

在常用于互补约束优化问题算法收敛性分析的假设条件下, 渐进弱非退化条件(AWN)是最弱的.利用F-B函数进行光滑化时, 若不满足AWN, 则难以得到期望的收敛性结果[5].结合本文提出的光滑函数本身的结构特点, 可避免在F-B光滑化方法中遇到的问题.由文献[2], 若条件$\widehat \xi$i(x)$\widehat \eta$i(x)≠0, iI00(x), 则稳定点序列xk满足AWN条件, 且该条件可粗略地表示为互补约束函数列Gi(xk)和Hi(xk)以相同数量级收敛于0.

由引理2结论(ⅲ)的证明可知, 在较弱的条件

$ \mathop {\lim }\limits_{{x_k} \to \bar x,\alpha \to 0} \left[ {\left( {{G_i}\left( {{x_k}} \right) - {H_i}\left( {{x_k}} \right)} \right)/\alpha } \right] < \infty $

下, ξi(x)ηi(x)≠0, iI00(x)成立.且由上述条件, 本文的光滑化方法不要求Gi(xk)和Hi(xk)以相同数量级收敛于0, 即需要的收敛性条件更弱, 因此得到的收敛性理论结果具有更广泛的适用性.下面通过一个互补约束的例子加以说明.

例1 已知xR , 设互补约束为

$ G\left( x \right) = {G_1}\left( x \right) = x,H\left( x \right) = {H_1}\left( x \right) = {x^2}, $
$ G{\left( x \right)^{\rm{T}}}H\left( x \right) = 0, $

易得其可行域为{0}.

x=0, xkRn, kN , 且k→∞时, xkx, 则$\mathop {{\rm{lim}}}\limits_{{x_k} \to \overline x } G({x_k}) = \mathop {{\rm{lim}}}\limits_{{x_k} \to \overline x } {x_k} = \overline x = 0$, $\mathop {{\rm{lim}}}\limits_{{x_k} \to \overline x } H({x_k}) = \mathop {{\rm{lim}}}\limits_{{x_k} \to \overline x } x_k^2 = {\overline x ^2} = 0$, 但G(xk)和H(xk)不以相同的数量级趋向于0.

对于光滑的F-B函数

$ {\mathit{\Phi }_\alpha }\left( x \right) = G\left( x \right) + H\left( x \right) - \sqrt {{G^2}\left( x \right) + {H^2}\left( x \right) + \alpha } , $

由文献[2]中的引理3.1, 将Φα(x)=0近似为G(x)TH(x)=$\frac{\alpha }{2}$, 于是有

$ \begin{array}{l} {{\hat \xi }_i}\left( {\bar x} \right) = \mathop {\lim }\limits_{{x_k} \to \bar x,\alpha \to 0} \frac{{{H_i}\left( {{x_k}} \right)}}{{{G_i}\left( {{x_k}} \right) + {H_i}\left( {{x_k}} \right)}} = \\ \;\;\;\;\;\;\;\;\;\;\;\mathop {\lim }\limits_{{x_k} \to \bar x,\alpha \to 0} \frac{{{{H'}_i}\left( {{x_k}} \right)}}{{{{G'}_i}\left( {{x_k}} \right) + {{H'}_i}\left( {{x_k}} \right)}} = 0, \end{array} $

其中i=1.所以, $\widehat \xi $i(x)$\widehat \eta $i(x)≠0, iI00(x)不成立, 即序列{xk}不满足AWN条件.

对于本文提出的光滑化方法, 有

$ \begin{array}{l} \mathop {\lim }\limits_{{x_k} \to \bar x,\alpha \to 0} \left[ {\left( {{G_i}\left( {{x_k}} \right) - {H_i}\left( {{x_k}} \right)} \right)/\alpha } \right] = \\ \;\;\;\;\;\;\;\mathop {\lim }\limits_{{x_k} \to \bar x,\alpha \to 0} \left( {{{G'}_i}\left( {{x_k}} \right) + {{H'}_i}\left( {{x_k}} \right)} \right) = \\ \;\;\;\;\;\;\;\mathop {\lim }\limits_{{x_k} \to \bar x,\alpha \to 0} 1 - 2{x_k} = 1. \end{array} $

${\overline \xi _i}(\overline x ) = \frac{{{e^{ -1}}}}{{1 + {e^{ -1}}}} \ne 0$, ${\overline \eta _i}(\overline x ) = \frac{1}{{1 + {e^{ -1}}}} \ne 0$,

因此, ξi(x)ηi(x)≠0, iI00(x).

3 收敛性分析

$\widehat x $是近似问题(11)的局部最优解.因问题(11)是一般的非线性规划问题, 所以在$\widehat x $处的线性独立约束规范成立下, 存在拉格朗日乘子向量λ Rm, λ ≥0, μ Rp, v ∈Rl, 使得

$ \begin{array}{*{20}{c}} {\nabla f\left( {\hat x} \right) + \nabla g{{\left( {\hat x} \right)}^{\rm{T}}}\mathit{\boldsymbol{\lambda }} + \nabla h{{\left( {\hat x} \right)}^{\rm{T}}}\mathit{\boldsymbol{\mu + }}{\nabla _x}\mathit{\Phi }{{\left( {\hat x,\alpha } \right)}^{\rm{T}}}\mathit{\boldsymbol{v}} = 0,}\\ {{\lambda _i} \geqslant 0,{\lambda _i}{g_i}\left( x \right) = 0,i = 1,2, \cdots ,m.} \end{array} $

$\overline L (x,\alpha ,\mathit{\boldsymbol{\lambda }},\mathit{\boldsymbol{\mu }},\mathit{\boldsymbol{v}}) = f(x) + \sum\limits_{i = 1}^m {{\lambda _i}{g_i}(x)} + \sum\limits_{i = 1}^p {{\mu _i}{h_i}(x)} + \sum\limits_{i = 1}^l {{\mu _i}{\mathit{\Phi }_\mathit{i}}(x,\alpha )} $.若$\nabla $xL($\widehat x$, α, λ, μ, v)=0, 且dT$\nabla $x2L($\widehat x$, α, λ , μ , v )d≥0, ∀dCα($\widehat x$), 其中,

$ \begin{array}{l} {C_\alpha }\left( {\hat x} \right) = \left\{ {d \in {R^n}\left| {\nabla {g_i}{{\left( {\hat x} \right)}^{\rm{T}}}d = 0} \right.,\;\;\;i \in {I_g}\left( {\hat x} \right),} \right.\\ \;\;\;\;\;\;\;\;\;\;\;\;\nabla {h_i}{\left( {\hat x} \right)^{\rm{T}}}d = 0,\;\;\;\;i \in 1,2, \cdots ,p,\\ \;\;\;\;\;\;\;\;\;\;\;\;\left. {{\nabla _x}{\mathit{\Phi }_i}{{\left( {\hat x,\alpha } \right)}^{\rm{T}}}d = 0,i \in 1,2, \cdots ,l} \right\}. \end{array} $

则称近似问题(11)在$\widehat x$处满足弱二阶必要条件.

引理3 设xF, 若在x处MPCC-LICQ成立, 且$\mathop {{\rm{lim}}}\limits_{{x_k} \to \overline x, \alpha \to 0} [({G_i}({x_k})-{H_i}({x_k}))/\alpha] < \infty$, 则存在α>0和x的某个邻域U(x), 对任意α∈(0, α), xU(x)∩Fα, 近似问题(11)在x处满足LICQ.

证明 因为问题(1)在x处满足MPCC-LICQ, 由定义知, {$\nabla $gi(x), iIg(x)}, {$\nabla $hi(x), i=1, 2, …, p}, {$\nabla $Gi(x), I00(x)∪I0+(x)}, {$\nabla $Hi(x), iI00(x)∪I+0(x)}线性无关.由文献[13]性质2.2知,存在x的邻域U(x)及α>0, 使得对α∈(0, α), ∀xU(x)∩Fα, 有

$ \begin{array}{l} \left\{ {\nabla {g_i}\left( x \right),i \in {I_g}\left( {\bar x} \right)} \right\},\left\{ {\nabla {h_i}\left( x \right),i = 1,2, \cdots ,p} \right\},\\ \left\{ {\nabla {G_i}\left( x \right),{I_{00}}\left( {\bar x} \right) \cup {I_{0 + }}\left( {\bar x} \right)} \right\},\left\{ {\nabla {H_i}\left( x \right),i \in {I_{00}}\left( {\bar x} \right)} \right.\\ \left. { \cup {I_{0 + }}\left( {\bar x} \right)} \right\} \end{array} $ (16)

线性无关.

否则, 假设对任意邻域U(x), 式(16)线性相关, 则必存在一个序列{xk}k=1Rn, 其中当k→∞时, xkx, 存在‖(λk, μk, αk, βk)‖=1, 使得

$ \begin{array}{l} \sum\limits_{i \in {I_g}\left( {\bar x} \right)} {\lambda _i^k\nabla {g_i}\left( {{x_k}} \right)} + \sum\limits_{i = 1}^p {\mu _i^k\nabla {h_i}\left( {{x_k}} \right)} - \\ \sum\limits_{i \in {I_{00}}\left( {\bar x} \right) \cup {I_{0 + }}\left( {\bar x} \right)} {\alpha _i^k\nabla {G_i}\left( {{x_k}} \right)} - \sum\limits_{i \in {I_{00}}\left( {\bar x} \right) \cup {I_{ + 0}}\left( {\bar x} \right)} {\beta _i^k\nabla {H_i}\left( {{x_k}} \right)} = 0. \end{array} $

不失一般性, 假设当k→∞时, λkλ*, μkμ*, αkα*, βkβ*, 则有

$ \begin{array}{l} \sum\limits_{i \in {I_g}\left( {\bar x} \right)} {{\lambda ^ * }\nabla {g_i}\left( {\bar x} \right)} + \sum\limits_{i = 1}^p {{\mu ^ * }\nabla {h_i}\left( {\bar x} \right)} - \\ \sum\limits_{i \in {I_{00}}\left( {\bar x} \right) \cup {I_{0 + }}\left( {\bar x} \right)} {{\alpha ^ * }\nabla {G_i}\left( {\bar x} \right)} - \sum\limits_{i \in {I_{00}}\left( {\bar x} \right) \cup {I_{ + 0}}\left( {\bar x} \right)} {{\beta ^ * }\nabla {H_i}\left( {\bar x} \right)} = 0, \end{array} $ (17)

$ \left\| {\left( {{\lambda ^ * },{\mu ^ * },{\alpha ^ * },{\beta ^ * }} \right)} \right\| = 1, $ (18)

但式(18)与{$\nabla $gi(x), iIg(x)}, {$\nabla $hi(x), i=1, 2, …, p}, {$\nabla $Gi(x), I00(x)∪I0+(x)}, {$\nabla $Hi(x), iI00(x)∪I+0(x)}线性无关矛盾.

下证对∀xU(x)∩Fα, 近似问题(11)满足LICQ.

任取xU(x)∩Fα, 假设存在λi(i=1, 2, …, m), μi(i=1, 2, …, p), γi(i=1, 2…, l), 使得

$ \sum\limits_{i \in {I_g}\left( {\bar x} \right)} {{\lambda _i}\nabla {g_i}\left( {\bar x} \right)} + \sum\limits_{i = 1}^p {{\mu _i}\nabla {h_i}\left( {\bar x} \right)} + \sum\limits_{i = 1}^l {{\gamma _i}{\nabla _x}{\mathit{\Phi }_i}\left( {x,\alpha } \right)} = 0, $ (19)

$ \begin{array}{l} \sum\limits_{i \in {I_g}\left( {\bar x} \right)} {{\lambda _i}\nabla {g_i}\left( {\bar x} \right)} + \sum\limits_{i = 1}^p {{\mu _i}\nabla {h_i}\left( {\bar x} \right)} + \sum\limits_{i = 1}^l {{\gamma _i}{\xi _i}\left( {x,\alpha } \right)} \times \\ \nabla {G_i}\left( x \right) + \sum\limits_{i = 1}^l {{\gamma _i}{\eta _i}\left( {x,\alpha } \right)\nabla {H_i}\left( x \right)} = 0. \end{array} $ (20)

由引理2中的结论(ⅲ), 对于iI+0(x), 当α→0时, ξi(x, α)→0, ηi(x, α)→1;对于iI0+(x), 当α→0时, ξi(x, α)→1, ηi(x, α)→0.当α→0, xx时, 式(20)可变为

$ \begin{array}{*{20}{c}} {\sum\limits_{i \in {I_g}\left( {\bar x} \right)} {{\lambda _i}\nabla {g_i}\left( {\bar x} \right)} + \sum\limits_{i = 1}^p {{\mu _i}\nabla {h_i}\left( {\bar x} \right)} + \sum\limits_{i \in {I_{00}}\left( {\bar x} \right) \cup {I_{0 + }}\left( {\bar x} \right)} {{\gamma _i}{\xi _i}\left( {\bar x} \right)} \times }\\ {\nabla {G_i}\left( x \right) + \sum\limits_{i \in {I_{00}}\left( {\bar x} \right) \cup {I_{ + 0}}\left( {\bar x} \right)} {{\gamma _i}{\eta _i}\left( {\bar x} \right)\nabla {H_i}\left( {\bar x} \right)} = 0.} \end{array} $

ui=-γiξi(x, α), vi=-γiηi(x, α), 与式(16)线性无关, 则有λi=0, iIg(x), μi=0, i=1, 2, …, p, ui=0, vi=0, i=1, 2, …, l.由引理2, ξi(x, α), ηi(x, α)不同时为0, 所以γi=0, i=1, 2, …, l.因此, 对∀xU(x)∩Fα, {$\nabla $gi(x), iIg(x)}, {$\nabla $hi(x), i=1, 2, …, p}, {$\nabla $xΦi(x, α), i=1, 2, …, l}线性无关, 即近似问题(11)在x处满足LICQ.

定理1 在问题(11)中, 令α=αk>0, 设{xk}为问题(11)的KKT稳定点序列.如果xFxk的聚点, 在x处MPCC-LICQ成立, 且

$ \mathop {\lim }\limits_{{x_k} \to \bar x,\alpha \to 0} \left[ {\left( {{G_i}\left( {{x_k}} \right) - {H_i}\left( {{x_k}} \right)} \right)/\alpha } \right] < \infty , $

则当αk趋于0时, x是问题(1)的C-稳定点.

证明 由{xk}为问题(11)的KKT稳定点序列, 假设存在唯一的拉格朗日乘子λk, μk, γk, 使得

$ \begin{array}{l} \nabla f\left( {{x_k}} \right) + \sum\limits_{i = 1}^m {\lambda _i^k\nabla {g_i}\left( {{x_k}} \right)} + \sum\limits_{i = 1}^p {\mu _i^k\nabla {h_i}\left( {{x_k}} \right)} + \\ \;\;\;\;\;\;\;\sum\limits_{i = 1}^l {\gamma _i^k{\nabla _x}{\mathit{\Phi }_i}\left( {{x_k},{\alpha _k}} \right)} = 0, \end{array} $ (21)
$ {\lambda ^k} \geqslant 0,\lambda _i^k{g_i}\left( {{x_k}} \right) = 0,\;\;\;\;i = 1,2, \cdots ,m, $ (22)
$ \begin{array}{l} {g_i}\left( {{x_k}} \right) \leqslant 0,i = 1,2, \cdots ,m,\;\;\;\;{h_i}\left( {{x_k}} \right) = 0,i = 1,2,\\ \cdots ,p,{\mathit{\Phi }_i}\left( {{x_k},{\alpha _k}} \right) = 0,i = 1,2, \cdots ,l. \end{array} $ (23)

由式(21)得

$ \begin{array}{l} - \nabla f\left( {{x_k}} \right) = \sum\limits_{i = 1}^m {\lambda _i^k\nabla {g_i}\left( {{x_k}} \right)} + \sum\limits_{i = 1}^p {\mu _i^k\nabla {h_i}\left( {{x_k}} \right)} + \\ \;\;\;\;\;\;\;\sum\limits_{i = 1}^l {\gamma _i^k{\nabla _x}{\mathit{\Phi }_i}\left( {{x_k},{\alpha _k}} \right)} = \sum\limits_{i = 1}^m {\lambda _i^k\nabla {g_i}\left( {{x_k}} \right)} + \\ \;\;\;\;\;\;\;\sum\limits_{i = 1}^p {\mu _i^k\nabla {h_i}\left( {{x_k}} \right)} + \sum\limits_{i = 1}^l {\gamma _i^k{\xi _i}\left( {{x_k},{\alpha _k}} \right)\nabla {G_i}\left( {{x_k}} \right)} + \\ \;\;\;\;\;\;\;\sum\limits_{i = 1}^l {\gamma _i^k{\eta _i}\left( {{x_k},{\alpha _k}} \right)\nabla {H_i}\left( {{x_k}} \right)} . \end{array} $ (24)

定义uik=-γiξi(xk, αk), vik=-γiηi(xk, αk), 则由式(24)得

$ \begin{array}{l} - \nabla f\left( {{x_k}} \right) = \sum\limits_{i = 1}^m {\lambda _i^k\nabla {g_i}\left( {{x_k}} \right)} + \sum\limits_{i = 1}^p {\mu _i^k\nabla {h_i}\left( {{x_k}} \right)} - \\ \;\;\;\;\;\;\;\;\sum\limits_{i = 1}^l {\mu _i^k\nabla {G_i}\left( {{x_k}} \right)} - \sum\limits_{i = 1}^l {v_i^k\nabla {H_i}\left( {{x_k}} \right)} . \end{array} $ (25)

下证式(25)中的乘子序列{(λik, μik, uik, vik)}有界.

如果{(λik, μik, uik, vik)}无界, 那么必存在一个子集K, 对任意kK, 有

$ \frac{\left( {{\lambda }^{k}},{{\mu }^{k}},{{u}^{k}},{{v}^{k}} \right)}{\left\| \left( {{\lambda }^{k}},{{\mu }^{k}},{{u}^{k}},{{v}^{k}} \right) \right\|}\xrightarrow[k\to \infty ]{k\in K}\left( {\lambda }',{\mu }',{u}',{v}' \right). $

iIg(x)时, 即gi(x) < 0, 由xkxg(x)的连续性, 当k充分大时, gi(xk) < 0, 又由式(22), 故当iIg(x)时, λik=0, 所以λi=0.式(25)两边同时除以‖(λk, μk, uk, vk)‖并取极限, 当k→∞时, 有

iIg(x)时, 即gi(x) < 0, 由xkxg(x)的连续性, 当k充分大时, gi(xk) < 0, 又由式(22), 故当iIg(x)时, λik=0, 所以λi=0.式(25)两边同时除以‖(λk, μk, uk, vk)‖并取极限, 当k→∞时, 有

$ \begin{array}{l} \sum\limits_{i \in {I_g}\left( {\bar x} \right)} {{{\lambda '}_i}\nabla {g_i}\left( {\bar x} \right)} + \sum\limits_{i = 1}^p {{{\mu '}_i}\nabla {h_i}\left( {\bar x} \right)} - \\ \sum\limits_{i \in {I_{00}}\left( {\bar x} \right) \cup {I_{0 + }}\left( {\bar x} \right)} {{{\mu '}_i}\nabla {G_i}\left( {\bar x} \right)} - \sum\limits_{i \in {I_{00}}\left( {\bar x} \right) \cup {I_{ + 0}}\left( {\bar x} \right)} {{{v'}_i}\nabla {H_i}\left( {\bar x} \right)} = 0. \end{array} $

uik, vik的定义及引理2中的结论(ⅲ), 当iI+0(x)时, ui′=0, 当iI0+(x)时, vi′=0.(λ′, μ′, u′, v′)≠0与在x处满足MPCC-LICQ矛盾, 所以{(λik, μik, uik, vik)}有界.

不失一般性, 设{(λik, μik, uik, vik)}收敛于(λ, μ, u, v).由式(22), λi≥0, xF, λiT$\nabla $gi(x)=0, i=1, 2, …, m.设

$ \begin{array}{l} \mathop {\lim }\limits_{k \to \infty } \lambda _i^k = {{\bar \lambda }_i},\;\;\;\;i \in {I_g}\left( {\bar x} \right),\mathop {\lim }\limits_{k \to \infty } \mu _i^k = {{\bar \mu }_i},i = 1,2, \cdots ,p,\\ \mathop {\lim }\limits_{k \to \infty } u_i^k = {{\bar u}_i},\;\;\;\;\;\mathop {\lim }\limits_{k \to \infty } v_i^k = {{\bar v}_i},i = 1,2, \cdots ,l. \end{array} $

iI+0(x)时, 即Gi(x)>0, Hi(x)=0, 故当k充分大时, 有Gi(xk)>Hi(xk).由

$ {\xi _i}\left( {{x_k},{\alpha _k}} \right) = \frac{{{{\rm{e}}^{ - \frac{1}{{{\alpha _k}}}\left( {{G_i}\left( {{x_k}} \right) - {H_i}\left( {{x_k}} \right)} \right)}}}}{{1 + {{\rm{e}}^{ - \frac{1}{{{\alpha _k}}}\left( {{G_i}\left( {{x_k}} \right) - {H_i}\left( {{x_k}} \right)} \right)}}}}, $

且当k→∞时, xkx, αk→0,

$ \mathop {\lim }\limits_{k \to \infty } {{\rm{e}}^{ - \frac{1}{{{\alpha _k}}}\left( {{G_i}\left( {{x_k}} \right) - {H_i}\left( {{x_k}} \right)} \right)}} = 0, $

可得$\mathop {{\rm{lim}}}\limits_{k \to \infty }$ ξi(xk, αk)=0, 从而得ui=0.同理, 当iI0+(x)时, 可得vi=0.由g, h, G, H连续可微, 对式(25)两边取极限, 得

$ \begin{array}{*{20}{c}} {\nabla f\left( {\bar x} \right) + \sum\limits_{i \in {I_g}\left( {\bar x} \right)} {{{\bar \lambda }_i}\nabla {g_i}\left( {\bar x} \right)} + \sum\limits_{i = 1}^p {{{\bar \mu }_i}\nabla {h_i}\left( {\bar x} \right)} - }\\ {\sum\limits_{i \in {I_{00}}\left( {\bar x} \right) \cup {I_{0 + }}\left( {\bar x} \right)} {{{\bar u}_i}\nabla {G_i}\left( {\bar x} \right)} - \sum\limits_{i \in {I_{00}}\left( {\bar x} \right) \cup {I_{ + 0}}\left( {\bar x} \right)} {{{\bar v}_i}\nabla {H_i}\left( {\bar x} \right)} = 0.} \end{array} $

uikvik=(γik)2ξi(xk, αk)ηi(xk, αk), 且由引理2中的结论(ⅲ), 当k→∞时, ξi(x)∈(0, 1), ηi(x)∈(0, 1), iI00(x), 所以uivi=γi2ξi(x)ηi(x)≥0, iI00(x).即证得x是问题(1)的C-稳定点.

定理2 设α=αk>0, {xk}是问题(11)的KKT稳定点序列, 且问题(11)在xk处满足弱二阶必要条件.如果xF是{xk}的聚点, 在x处MPCC-LICQ成立, 且

$ \mathop {\lim }\limits_{{x_k} \to \bar x,\alpha \to 0} \left[ {\left( {{G_i}\left( {{x_k}} \right) - {H_i}\left( {{x_k}} \right)} \right)/\alpha } \right] < \infty , $

则当{αk}趋于0时, x是问题(1)的S-稳定点.

证明 由定理1知, x是问题(1)的C-稳定点.假设x不是问题(1)的S-稳定点, 那么必存在i0I00(x), 使得

$ {{\bar u}_{{i_0}}} = \mathop {\lim }\limits_{k \to \infty } \left( { - \gamma _{{i_0}}^k{\xi _{{i_0}}}\left( {{x_k},{\alpha _k}} \right)} \right) < 0, $
$ {{\bar v}_{{i_0}}} = \mathop {\lim }\limits_{k \to \infty } \left( { - \gamma _{{i_0}}^k{\eta _{{i_0}}}\left( {{x_k},{\alpha _k}} \right)} \right) < 0. $

由引理2, 当k→∞时, ξi0(xk, αk)→ξi0(x)>0, ηi0(xk, αk)→ηi0(x)>0.

因为在x处MPCC-LICQ成立, 由引理3及$\nabla $g, $\nabla $h, $\nabla $G, $\nabla $H连续, Ig(xk)⊆Ig(x)可知, 由$\nabla $gi(xk), $\nabla $hi(xk), $\nabla $Gi(xk), $\nabla $Hi(xk)组成的矩阵为列满秩矩阵, 因此可取有界序列{dk}, 使得

$ \nabla {g_i}{\left( {{x_k}} \right)^{\rm{T}}}{d_k} = 0,\;\;\;i \in {I_g}\left( {{x_k}} \right), $
$ \nabla {h_i}{\left( {{x_k}} \right)^{\rm{T}}}{d_k} = 0,\;\;\;\;i = 1,2, \cdots ,p, $
$ \nabla {G_i}{\left( {{x_k}} \right)^{\rm{T}}}{d_k} = 0,\;\;\;i \in \left\{ {1,2, \cdots ,l,} \right\}\backslash {i_0}, $
$ \nabla {H_i}{\left( {{x_k}} \right)^{\rm{T}}}{d_k} = 0,\;\;\;i \in \left\{ {1,2, \cdots ,l,} \right\}\backslash {i_0}, $
$ \nabla {G_{{i_0}}}{\left( {{x_k}} \right)^{\rm{T}}}{d_k} = {\eta _{{i_0}}}\left( {{x_k},{\alpha _k}} \right), $
$ \nabla {H_{{i_0}}}{\left( {{x_k}} \right)^{\rm{T}}}{d_k} = - {\xi _{{i_0}}}\left( {{x_k},{\alpha _k}} \right). $

下证dkCαk(xk), 其中,Cαk(xk)={dkRn|$\nabla $gi(xk)Tdk=0, iIg(xk), $\nabla $hi(xk)Tdk=0, i=1, 2, …, p, $\nabla $xΦi(xk, αk)Tdk=0, i∈1, 2, …, l}.由引理2中的结论(ⅱ)得,

$ \begin{array}{l} {\nabla _x}\mathit{\Phi }{\left( {{x_k},{\alpha _k}} \right)^{\rm{T}}}{d_k} = \left( {{\xi _i}\left( {{x_k},{\alpha _k}} \right)\nabla {G_i}{{\left( {{x_k}} \right)}^{\rm{T}}} + } \right.\\ \;\;\;\;\;\;\;\left. {{\eta _i}\left( {{x_k},{\alpha _k}} \right)\nabla {H_i}{{\left( {{x_k}} \right)}^{\rm{T}}}} \right){d_k} = \\ \;\;\;\;\;\;\;{\xi _i}\left( {{x_k},{\alpha _k}} \right)\nabla {G_i}{\left( {{x_k}} \right)^{\rm{T}}}{d_k} + \\ \;\;\;\;\;\;\;{\eta _i}\left( {{x_k},{\alpha _k}} \right)\nabla {H_i}{\left( {{x_k}} \right)^{\rm{T}}}{d_k}, \end{array} $

ii0时, $\nabla $xΦ(xk, αk)Tdk=0,

i=i0时,

$ \begin{array}{l} {\nabla _x}\mathit{\Phi }{\left( {{x_k},{\alpha _k}} \right)^{\rm{T}}}{d_k} = {\xi _{{i_0}}}\left( {{x_k},{\alpha _k}} \right){\eta _{{i_0}}}\left( {{x_k},{\alpha _k}} \right) - \\ \;\;\;\;\;\;{\eta _{{i_0}}}\left( {{x_k},{\alpha _k}} \right){\xi _{{i_0}}}\left( {{x_k},{\alpha _k}} \right) = 0. \end{array} $

综上可得$\nabla $xΦ(xk, αk)Tdk=0, i=1, 2…, l.因此dkCαk(xk).

由在任意点xk处弱二阶必要条件成立,得

$ d_k^{\rm{T}}\nabla _x^2\bar L\left( {{x_k},{\alpha _k},{\lambda _k},{\mu _k},{\gamma _k}} \right){d_k} \geqslant 0, $ (26)

$ \begin{array}{l} d_k^{\rm{T}}{\nabla ^2}f\left( {{x_k}} \right){d_k} + \sum\limits_{i \in {I_g}\left( {{x_k}} \right)} {\lambda _i^kd_k^{\rm{T}}{\nabla ^2}{g_i}\left( {{x_k}} \right){d_k}} + \\ \sum\limits_{i = 1}^p {\mu _i^kd_k^{\rm{T}}{\nabla ^2}{h_i}\left( {{x_k}} \right){d_k}} + \sum\limits_{i = 1}^l {\gamma _i^kd_k^T\nabla _x^2{\mathit{\Phi }_i}\left( {{x_k},{\alpha _k}} \right){d_k}} \geqslant 0. \end{array} $

由引理2中的结论(ⅱ),

$ \begin{array}{l} d_k^{\rm{T}}\nabla _x^2{\mathit{\Phi }_i}\left( {{x_k},{\alpha _k}} \right){d_k} = {\xi _i}\left( {{x_k},{\alpha _k}} \right)d_k^{\rm{T}}{\nabla ^2}{G_i}\left( {{x_k}} \right){d_k} + \\ \;\;\;\;\;\;\;\;\;\;{\eta _i}\left( {{x_k},{\alpha _k}} \right)d_k^{\rm{T}}{\nabla ^2}{H_i}\left( x \right){d_k} - \frac{1}{{{\alpha _k}}}\left( {{\xi _i}\left( {{x_k},{\alpha _k}} \right) - } \right.\\ \;\;\;\;\;\;\;\;\;\;\left. {\xi _i^2\left( {{x_k},{\alpha _k}} \right)} \right)\left( {d_k^{\rm{T}}\nabla {G_i}\left( {{x_k}} \right)\nabla {G_i}{{\left( {{x_k}} \right)}^{\rm{T}}}{d_k} - } \right.\\ \;\;\;\;\;\;\;\;\;\;\left. {d_k^{\rm{T}}\nabla {H_i}\left( {{x_k}} \right)\nabla {G_i}{{\left( {{x_k}} \right)}^{\rm{T}}}{d_k}} \right) + \\ \;\;\;\;\;\;\;\;\;\;\frac{1}{{{\alpha _k}}}{\xi _i}\left( {{x_k},{\alpha _k}} \right){\eta _i}\left( {{x_k},{\alpha _k}} \right)\left( {d_k^{\rm{T}}\nabla {G_i}\left( {{x_k}} \right)\nabla {H_i}\left( {{x_k}} \right){d_k} - } \right.\\ \;\;\;\;\;\;\;\;\;\;\left. {d_k^{\rm{T}}\nabla {H_i}\left( {{x_k}} \right)\nabla {H_i}{{\left( {{x_k}} \right)}^{\rm{T}}}{d_k}} \right). \end{array} $

ii0时,

$ \begin{array}{l} d_k^{\rm{T}}\nabla _x^2{\mathit{\Phi }_i}\left( {{x_k},{\alpha _k}} \right){d_k} = {\xi _i}\left( {{x_k},{\alpha _k}} \right)d_k^{\rm{T}}{\nabla ^{\rm{2}}}{G_i}\left( {{x_k}} \right){d_k} + \\ \;\;\;\;\;\;\;\;{\eta _i}\left( {{x_k},{\alpha _k}} \right)d_k^{\rm{T}}{\nabla ^{\rm{2}}}{H_i}\left( x \right){d_k}. \end{array} $

i= i 0时,

$ \begin{array}{l} d_k^{\rm{T}}\nabla _x^2{\mathit{\Phi }_i}\left( {{x_k},{\alpha _k}} \right){d_k} = {\xi _{{i_0}}}\left( {{x_k},{\alpha _k}} \right)d_k^{\rm{T}}{\nabla ^{\rm{2}}}{G_{{i_0}}}\left( {{x_k}} \right){d_k} + \\ \;\;\;\;\;\;\;\;{\eta _{{i_0}}}\left( {{x_k},{\alpha _k}} \right)d_k^{\rm{T}}{\nabla ^2}{H_{{i_0}}}\left( x \right){d_k} - \frac{1}{{{\alpha _k}}}{\xi _{{i_0}}}\left( {{x_k},{\alpha _k}} \right){\eta _{{i_0}}}\left( {{x_k},{\alpha _k}} \right). \end{array} $

$ \begin{array}{l} d_k^{\rm{T}}\nabla _x^2L\left( {{x_k},{\alpha _k},{\lambda _k},{\mu _k},{\gamma _k}} \right){d_k} = \\ \;\;\;\;\;d_k^{\rm{T}}{\nabla ^2}f\left( {{x_k}} \right){d_k} + \sum\limits_{i \in {I_g}\left( {\bar x} \right)} {\lambda _i^kd_k^{\rm{T}}{\nabla ^2}{g_i}\left( {{x_k}} \right){d_k}} + \\ \;\;\;\;\;\sum\limits_{i = 1}^p {\mu _i^kd_k^{\rm{T}}{\nabla ^2}{h_i}\left( {{x_k}} \right){d_k}} + \\ \;\;\;\;\;\sum\limits_{i = 1}^l {\gamma _i^k\left( {{\xi _i}\left( {{x_k},{\alpha _k}} \right)d_k^{\rm{T}}{\nabla ^2}{G_i}\left( {{x_k}} \right){d_k} + } \right.} \\ \;\;\;\;\;\left. {{\eta _i}\left( {{x_k},{\alpha _k}} \right)d_k^{\rm{T}}{\nabla ^2}{H_i}\left( {{x_k}} \right){d_k}} \right) - \\ \;\;\;\;\;\frac{1}{{{\alpha _k}}}\gamma _{{i_0}}^k{\xi _{{i_0}}}\left( {{x_k},{\alpha _k}} \right){\eta _{{i_0}}}\left( {{x_k},{\alpha _k}} \right). \end{array} $ (27)

由{dk}的有界性, f, g, h, GH的二阶连续可微性及定理1中关于乘子有界性的证明, 可知式(27)中除了$\frac{{ -1}}{{{\alpha _k}}}$γki0ξi0(xk, αk)ηi0(xk, αk)项外, 其他项均有界.由于limk→∞-γki0ξi0(xk, αk)=$\mathop {{\rm{lim}}}\limits_{k \to \infty }$ uki0=ui0 < 0, 又ξi0(xk, αk) ∈(0, 1), 所以$\mathop {{\rm{lim}}}\limits_{k \to \infty }$ γki0=γi0>0.由引理2中的结论(ⅲ), 当k充分大时, $\mathop {{\rm{lim}}}\limits_{k \to \infty }$ξi0(xk, αk)=ξi0(x), $\mathop {{\rm{lim}}}\limits_{k \to \infty }$ ηi0(xk, αk)=ηi0(x), 且ξi0(x)∈(0, 1), ηi0(x)∈(0, 1), 故

$ - \frac{1}{{{\alpha _k}}}\gamma _{{i_0}}^k{\xi _{{i_0}}}\left( {{x_k},{\alpha _k}} \right){\eta _{{i_0}}}\left( {{x_k},{\alpha _k}} \right) \to - \infty , $

与式(26)矛盾, 故ui0≥0.同理vi0≥0.所以x是问题(1)的S-稳定点.

4 数值实验

算法1 (光滑化算法)

步0 给定初始可行点x1Rn, α1>0, εstop, β∈(0, 1).令k:=1.

步1 令αk为当前的光滑参数, 求解问题(11), 定义其最优解为xk.

步2 计算lk, 若lk < εstop, 算法终止.否则令αk+1:=β αk, xk+1:=xk, k:=k+1, 转步1.其中,

$ \begin{array}{l} {l_k} = \max \left\{ {\left\| {\max \left\{ {g\left( {{x_k}} \right),0} \right\}} \right\|,\left\| {h\left( {{x_k}} \right)} \right\|,} \right.\\ \;\;\;\;\;\;\left. {\left\| {\min \left\{ {G\left( {{x_k}} \right),H\left( {{x_k}} \right)} \right\}} \right\|} \right\}. \end{array} $

算法1用lk作为终止条件衡量解的准确性[4].当lk=0时, xk是问题(1)的一个可行点.由算法1, 在一些假设条件下, xk也是问题(11)的一个稳定点.进一步, 由定理1及定理2, xk是问题(1)的一个近似最优解, 并且当lk越接近0时, 解的准确性越高.

下面对MacMPEC测试题库[14]中的一些算例进行数值实验.对于同样的问题, 在相同初始条件下, 将算法1得到的结果与文献[4]中相应算法(记为算法2)得到的结果进行了比较.所有算法程序均在内存为2.00 GB, CPU为2.13 GHz的笔记本电脑上运行, 操作系统为Windows7, Matlab版本为R2014a, 用其优化工具箱中的内置fmincon函数求解问题(11).

实验中, 取终止条件为εstop≤10-6; 取初始的光滑参数α1=1, β=0.1, 为得到相同的最优解, 取算例bilevel 1的初始光滑参数α1=0.001,且同一算例初值相同.实验结果见表 1表 1分别给出了问题的名称、测试问题的维数(n, m, l)、选取的初值x1、目标函数的最优值f*、最优解x*、外迭代的次数k1、内迭代的总次数k2、终止条件lk1等, 其中初值和最优解只给出了原问题的变量x对应的向量.

表 1 数值结果比较 Table 1 The comparison of numerical results

表 1可以看出, 算法1求解问题(1)是有效的,所有算例均得到了和算法2较一致的最优值和最优解, 并且除算例desilva外, 算法1仅需用较少的迭代次数就可得到与算法2相同的近似最优值和最优解.另外, 通过算法1得到的终止条件lk的16个算例中有11个其计算结果更接近0, 说明x*是问题(1)的一个近似最优解, 且解的准确性更高.

考虑到表 1中算例的维数均低于20, 为此,在MacMPEC测试题库中选取了4个高维算例, 如表 2所示,此4个高维算例用算法1求解,均能在较短的时间t内得到较精确的近似最优解.

表 2 高维算例的数值结果 Table 2 The numerical results of high dimension examples
5 总结

利用Sigmoid函数的积分函数构造等式约束近似互补约束条件, 提出了一种新的光滑化方法, 得到了形式简单、有效可行的互补约束优化问题的光滑近似算法.对由近似问题得到的KKT稳定点序列的收敛性进行了进一步的理论研究, 给出了不同于AWN和ULSC的条件.证明了当光滑参数趋于0时, 近似问题的KKT稳定点序列收敛于MPCC的C稳定点;若同时考虑弱二阶必要条件, 则近似问题的KKT稳定点序列收敛于原问题的S-稳定点.进一步, 对提出的方法进行了包含高维算例的一系列数值实验, 并将运算结果与其他算法的结果进行了比较, 进一步验证了本文算法的有效性.然而,仍有大量工作值得今后继续研究:如在更弱的条件下, 即在MFCQ、ACQ或SCQ下, 能否得到同样的收敛结果; 前人均先假设近似问题的稳定点序列存在, 然而原问题应满足什么条件才能保证该假设成立; 以及利用提出的算法对更多大规模算例进行数值实验,这些均有待进一步研究.

参考文献
[1] LUO Z Q, PANG J S, RALPH D. Mathematical Programs with Equilibrium Constraints[M]. Cambridge: Cambridge University Press, 1996.
[2] FUKUSHIMA M, PANG J S. Convergence of a smoo-thing continuation method for mathematical programs with complementarity constraints[J]. Lecture Notes in Economics & Mathematical Systems, 1999, 477: 99–110.
[3] YIN H X, ZHANG J Z. Global convergence of a smooth approximation method for mathematical programs with complementarity constraints[J]. Mathematical Methods of Operations Research, 2006, 64(2): 255–269. DOI:10.1007/s00186-006-0076-2
[4] CHEN Y, WAN Z. A locally smoothing method for mathematical programs with complementarity constraints[J]. ANZIAM, 2015, 56(3): 299–315. DOI:10.1017/S1446181115000048
[5] LI Y Y, TAN T, LI X S. A log-exponential smoothing method for mathematical programs with complementarity constraints[J]. Applied Mathematics and Computation, 2012, 218(10): 5900–5909. DOI:10.1016/j.amc.2011.11.046
[6] YAN T. A class of smoothing methods for mathema-tical programs with complementarity constraints[J]. Applied Mathematics and Computation, 2007, 186(1): 1–9. DOI:10.1016/j.amc.2006.05.197
[7] YAMAMURA H, OKUNO T, HAYASHI S, et al. A smoothing SQP method for mathematical programs with linear second-order cone complementarity constraints[J]. Pacific Journal of Optimization, 2013, 9(2): 345–372.
[8] BENKO M, GFRERER H. An SQP method for mathematical programs with complementarity constraints with strong convergence properties[J]. Kybernetika, 2016, 52(2): 169–208.
[9] HOHEISEL T, KANZOW C, SCHWARTZ A. Theoretical and numerical comparison of relaxation methods for mathematical programs with complementarity constraints[J]. Mathematical Programming, 2013, 137(1): 257–288.
[10] 刘水霞, 陈国庆. 求解互补约束优化问题的乘子松弛法[J]. 运筹学学报, 2014, 18(4): 119–130.
LIU S X, CHEN G Q. A multiplier relaxation method for solving mathematical programs with comple-mentarity constraints[J]. Operations Research Transactions, 2014, 18(4): 119–130.
[11] LI J L, HUANG X J, JIAN J B. A new relaxation method for mathematical programs with nonlinear complementarity constraints[J]. Journal of Computational Analysis & Applications, 2016, 20(3): 548–565.
[12] CHEN C H, MANGASARIAN O L. Smoothing methods for convex inequalities and linear complementarity problems[J]. Mathematical Programming, 1995, 71(1): 51–69. DOI:10.1007/BF01592244
[13] QI L Q, WEI Z X. On the constant positive linear dependence condition and its application to SQP methods[J]. Society for Industrial and Applied Mathematics, 2000, 10(4): 963–981.
[14] LEYFFER S. MacMPEC: AMPL Collection of MPECs[R/OL]. 2004. https://www.msc.anl.gov/leyffer/MacMPEC .