文章快速检索     高级检索
  浙江大学学报(理学版)  2017, Vol. 44 Issue (5): 538-541  DOI:10.3785/j.issn.1008-9497.2017.05.007
0

引用本文 [复制中英文]

章茜. 行为两两NQD随机变量阵列加权和的完全收敛性[J]. 浙江大学学报(理学版), 2017, 44(5): 538-541. DOI: 10.3785/j.issn.1008-9497.2017.05.007.
[复制中文]
ZHANG Qian. Complete convergence for weighted sums of arrays with row-wise pairwise negatively quadrant dependent sequences[J]. Journal of Zhejiang University(Science Edition), 2017, 44(5): 538-541. DOI: 10.3785/j.issn.1008-9497.2017.05.007.
[复制英文]

作者简介

章茜(1984-), ORCID:http://orcid.org/0000-0002-2955-4600, 女, 硕士, 讲师, 主要从事概率极限理论研究, E-mail:qiwa_007@163.com

文章历史

收稿日期:2016-10-06
行为两两NQD随机变量阵列加权和的完全收敛性
章茜     
浙江机电职业技术学院 数学教研室, 浙江 杭州 310053
摘要: 负相依在统计分析和可靠性理论中有着广泛的应用.研究了一类行为两两NQD随机变量阵列加权和的完全收敛性.利用矩不等式和有效的截尾方法,建立了行为两两NQD随机变量阵列加权和的完全收敛性的充要条件,从而推广了吴群英等建立的关于一类NA随机变量序列的完全收敛性的结论.
关键词: 行为两两NQD阵列    加权和    完全收敛性    
Complete convergence for weighted sums of arrays with row-wise pairwise negatively quadrant dependent sequences
ZHANG Qian     
Mathematics Teaching and Research Section, Zhejiang Institute of Mechanical and Electrical Engineering, Hangzhou 310053, China
Abstract: Negative dependence is important and widely used in multivariate statistical analysis and reliability theory. The purpose of this paper is to study a kind of complete convergence for weighted sums of pairwise negatively quadrant dependent (NQD) sequences with EX=0, E|X|exp(lnα|X|) < ∞, α>1.By applying moment inequality and truncation methods, the sufficient conditions of complete convergence theorem of weighted sums for arrays of row-wise pairwise NDQ random variables are established, which extends to the case of weighted sums of pairwise negatively quadrant dependent sequences with imposing weighted condition. Our results generalize corresponding result obtained by WU et al.
Key words: arrays with row-wise pairwise negatively quadrant dependent sequences    weighted sums    complete convergence    
0 引言

定义1  对于随机变量XY, 若∀x, yR, 有

$ P\left( X\le x,Y\le y \right)\le P\left( X\le x \right)P\left( Y\le y \right), $

则称XY是NQD(negatively quadrant dependent)的; 若∀ij, XiXj是NQD的, 则称随机变量序列{Xn, n≥1}是两两NQD列.

上述定义由统计学家LEHMAMN[1]于1966年提出.两两NQD列是一类非常广泛的随机变量序列, 例如两两独立的随机变量列以及NA(negative association)[2]列就是其特例.因此, 对两两NQD列的研究具有重要的理论意义和应用价值.目前, 关于两两NQD列的极限研究已有许多结果, 详见文献[3-7].近年来, GUT等[8]获得了一类独立同分布且均值为零的随机变量序列的完全收敛性, 吴群英等[9]将其推广到NA随机变量序列的情形.受上述文献启发, 本文将文献[9]的定理1.3推广到更为一般的行为两两NQD随机变量阵列加权和的情形.

定义2  随机变量阵列{Xni, i≥1, n≥1}被随机变量X控制是指:如果存在一常数C>0, 使得对任意的n≥1, i≥1, x≥0, 有P(|Xni|≥x)≤CP(|X|≥x).

本文中, anbn表示存在常数c>0, 使得对所有n≥1, 有an≤cbn. anbn表示对所有n≥1, 有anbn以及bnan.I(A)表示集合A的示性函数, #A表示集合A中元素的个数.

1 引理

引理1[3]  设随机变量XY是NQD的, 则

(1)EXYEXEY;

(2) 对∀x, yR, 有P(X>x, Y>y)≤P(X>x)P(Y>y);

(3) 若f, g同为非降(或非增)函数, 则f(X)与g(Y)仍为NQD的.

引理2[3]  设{Xn, n≥1}是两两NQD列, 且EXn2 < ∞(n≥1), 记

$ {T_j}\left( k \right) = \sum\limits_{i = j + 1}^{j + k} {\left( {{X_i} - E{X_i}} \right)} ,j \ge 0, $

则有

(1)E(Tj(k)2)≤$\sum\limits_{i=j+1}^{j+k}{EX_{i}^{2}}$;

(2)$E\left[ {\mathop {\max }\limits_{1 \le k \le n} {{\left( {{T_j}\left( k \right)} \right)}^2}} \right] \le \frac{{4{{\ln }^2}n}}{{{{\ln }^2}2}}\sum\limits_{i = j + 1}^{j + k} {EX_i^2} .$

引理3[7]  令{Xn, n≥1}是两两NQD随机变量列, 那么对于任意的n≥1以及x≥0, 有

$ \begin{array}{l} {\left( {1 - P\left( {\mathop {\max }\limits_{1 \le k \le n} \left| {{X_k}} \right| > x} \right)} \right)^2}\sum\limits_{k = 1}^n {P\left( {\left| {{X_k}} \right| > x} \right)} \le \\ \;\;\;\;\;\;2P\left( {\mathop {\max }\limits_{1 \le k \le n} \left| {{X_k}} \right| > x} \right). \end{array} $
2 主要结果及证明

定理1   {Xni, i≥1, n≥1}是行为两两NQD随机变量阵列, 均值为零, 且被随机变量X随机控制, {ank, k≥1, n≥1}是一个实数阵列, 令α>1, ${{\sum\limits_{i=1}^{\infty }{\left| {{a}_{ni}} \right|}}^{2}}$=O(exp(-lnαn)), 记Sni=$\sum\limits_{k=1}^{i}{{{a}_{nk}}}{{X}_{nk}}$, 则

$ E\left| X \right|\exp \left( {{{\ln }^\alpha }\left| X \right|} \right) < \infty $ (1)
$ \Leftrightarrow \sum\limits_{n = 1}^\infty {\exp \left( {{{\ln }^\alpha }n} \right)\frac{{{{\ln }^{\alpha - 1}}n}}{{{n^2}}}P\left( {\mathop {\max }\limits_{1 \le k \le n} \left| {{S_{nk}}} \right| > n\beta } \right) < \infty \left( {\beta > 1} \right)} . $ (2)

证明  先证式(1)⇒式(2).

不失一般性,本文假设ani>0, ∀β>1,bn=$\frac{{{\beta }_{n}}}{{{\ln }^{\alpha }}n}$,其中n≥1.

$ \begin{array}{l} X_{ni}^{\left( 1 \right)} = - {b_n}I\left( {{a_{ni}}{X_{ni}} < - {b_n}} \right) + \\ \;\;\;\;\;\;\;\;{a_{ni}}{X_{ni}}I\left( {\left| {{a_{ni}}{X_{ni}}} \right| \le {b_n}} \right) + {b_n}I\left( {{a_{ni}}{X_{ni}} > {b_n}} \right), \end{array} $
$ X_{ni}^{\left( 2 \right)} = \left( {{a_{ni}}{X_{ni}} - {b_n}} \right)I\left( {{b_n} < {a_{ni}}{X_{ni}} < n} \right), $
$ X_{ni}^{\left( 3 \right)} = \left( {{a_{ni}}{X_{ni}} + {b_n}} \right)I\left( { - n < {a_{ni}}{X_{ni}} < - {b_n}} \right), $
$ \begin{array}{l} X_{ni}^{\left( 4 \right)} = \left( {{a_{ni}}{X_{ni}} + {b_n}} \right)I\left( {{a_{ni}}{X_{ni}} < - n} \right) + \\ \;\;\;\;\;\;\;\;\;\;\left( {{a_{ni}}{X_{ni}} - {b_n}} \right)I\left( {{a_{ni}}{X_{ni}} > n} \right). \end{array} $

显然有$S_{nk}^{\left( j \right)}=\sum\limits_{i=1}^{k}{X_{ni}^{\left( j \right)}}$j=1, 2, 3, 4, 1≤kn, n≥1,

$ {S_{nk}} = \sum\limits_{j = 1}^4 {S_{nk}^{\left( j \right)}} . $

注意到

$ \left( {\mathop {\max }\limits_{1 \le k \le n} \left| {{S_{nk}}} \right| > n\beta } \right) \subseteq \bigcup\limits_{j = 1}^4 {\left( {\mathop {\max }\limits_{1 \le k \le n} \left| {S_{nk}^{\left( j \right)}} \right| > \frac{{n\beta }}{4}} \right).} $

因此欲证式(2),只需证明

$ {I_j} = \sum\limits_{n = 1}^\infty {\exp \left( {{{\ln }^\alpha }n} \right)\frac{{{{\ln }^{\alpha - 1}}n}}{{{n^2}}}P\left( {\mathop {\max }\limits_{1 \le k \le n} \left| {S_{nk}^{\left( j \right)}} \right| > \frac{{n\beta }}{4}} \right) < \infty } , $

j=1, 2, 3, 4即可.

EXni=0及Markov不等式,先证

$ {n^{ - 1}}\mathop {\max }\limits_{1 \le k \le n} E\left| {S_{nk}^{\left( j \right)}} \right| \le $
$ \begin{array}{l} {n^{ - 1}}\sum\limits_{i = 1}^n {\left( {E\left| {{a_{ni}}{X_{ni}}} \right|I\left( {\left| {{a_{ni}}{X_{ni}}} \right| > {b_n}} \right) + } \right.} \\ \;\;\;\;\;\;\left. {{b_n}P\left( {\left| {{a_{ni}}{X_{ni}}} \right| > {b_n}} \right)} \right) \le \end{array} $
$ \begin{array}{l} {n^{ - 1}}\sum\limits_{i = 1}^n {\left( {E\left| {{a_{ni}}{X_{ni}}} \right|\frac{{\left| {{a_{ni}}{X_{ni}}} \right|}}{{{b_n}}}I\left( {\left| {{a_{ni}}{X_{ni}}} \right| > {b_n}} \right) + } \right.} \\ \;\;\;\;\;\;\;\left. {b\frac{{E{{\left| {{a_{ni}}{X_{ni}}} \right|}^2}}}{{b_n^2}}} \right) \ll {n^{ - 1}}b_n^{ - 1}\sum\limits_{i = 1}^n {E{{\left| {{a_{ni}}{X_{ni}}} \right|}^2}} \ll \end{array} $
$ {n^{ - 1}}b_n^{ - 1}E{\left| X \right|^2}\sum\limits_{i = 1}^n {{{\left| {{a_{ni}}} \right|}^2}} \ll $
$ {n^{ - 1}}\frac{{{{\ln }^\alpha }n}}{n}\exp \left( {{{\ln }^\alpha }n} \right) \to 0,n \to \infty . $

${{\tilde I}_1} = \sum\limits_{n = 1}^\infty {\exp } \left( {{{\ln }^\alpha }n} \right)\frac{{{{\ln }^{\alpha - 1}}n}}{{{n^2}}}P\left( {\mathop {\max }\limits_{1 \le k \le n} \left| {S_{nk}^{\left( 1 \right)} - ES_{nk}^{\left( 1 \right)}} \right| > \frac{{n\beta }}{4}} \right) $, 欲证I1 < ∞,只需证明${{{\tilde{I}}}_{1}}$ < ∞即可.

E|X|exp(lnα|X|) < ∞蕴含着$E{{X}^{2}}<\infty \left( E\left| X \right|\exp \left( {{\ln }^{\alpha }}\left| X \right| \right)>E{{X}^{2}},\alpha >1 \right)$、Markov不等式及引理2.

$ \begin{array}{l} {{\tilde I}_1} \ll \sum\limits_{n = 1}^\infty {\exp \left( {{{\ln }^\alpha }n} \right)\frac{{{{\ln }^{\alpha - 1}}n}}{{{n^4}}}E\left( {\mathop {\max }\limits_{1 \le k \le n} {{\left( {S_{nk}^{\left( 1 \right)} - ES_{nk}^{\left( 1 \right)}} \right)}^2}} \right)} \ll \\ \;\;\;\;\;\;\;\sum\limits_{n = 1}^\infty {\exp \left( {{{\ln }^\alpha }n} \right)\frac{{{{\ln }^{\alpha - 1}}n}}{{{n^4}}}\frac{{4{{\ln }^2}n}}{{{{\ln }^2}2}}\left( {\sum\limits_{i = 1}^\infty {E{{\left( {X_{ni}^{\left( 1 \right)}} \right)}^2}} } \right)} \ll \\ \;\;\;\;\;\;\;\sum\limits_{n = 1}^\infty {\exp \left( {{{\ln }^\alpha }n} \right)\frac{{{{\ln }^{\alpha + 1}}n}}{{{n^4}}}} \sum\limits_{i = 1}^n {\left( {E{{\left| {{a_{ni}}{X_{ni}}} \right|}^2} \times } \right.} \\ \;\;\;\;\;\;\;\left. {I\left( {\left| {{a_{ni}}{X_{ni}}} \right| \le {b_n}} \right) + b_n^2P\left( {\left| {{a_{ni}}{X_{ni}}} \right| > {b_n}} \right)} \right) \ll \\ \;\;\;\;\;\;\;\sum\limits_{n = 1}^\infty {\exp \left( {{{\ln }^\alpha }n} \right)\frac{{{{\ln }^{\alpha + 1}}n}}{{{n^4}}}} \sum\limits_{i = 1}^n {E{{\left| {{a_{ni}}{X_{ni}}} \right|}^2} \ll } \\ \;\;\;\;\;\;\;\sum\limits_{n = 1}^\infty {\exp \left( {{{\ln }^\alpha }n} \right)\frac{{{{\ln }^{\alpha + 1}}n}}{{{n^4}}}} \sum\limits_{i = 1}^n {{{\left| {{a_{ni}}} \right|}^2} \ll } \\ \;\;\;\;\;\;\;\sum\limits_{n = 1}^\infty {\frac{{{{\ln }^{\alpha + 1}}n}}{{{n^4}}}} < \infty . \end{array} $

对于I2,根据Xni(2)的定义, Xni(2)>0,Snk(2)>0,且有

$ \begin{array}{l} \left( {\mathop {\max }\limits_{1 \le k \le n} \left| {S_{nk}^{\left( 2 \right)}} \right| > \frac{{n\beta }}{4}} \right) = \left( {\sum\limits_{n = 1}^n {X_{ni}^{\left( 2 \right)}} > \frac{{n\beta }}{4}} \right) = \\ \;\;\;\;\;\;\;\left( {\sum\limits_{i = 1}^n {\left( {{a_{ni}}{X_{ni}} - {b_n}} \right)I\left( {{b_n} < {a_{ni}}{X_{ni}} < n} \right)} > \frac{{n\beta }}{4}} \right) \subseteq \\ \;\;\;\;\;\;\;\left( {至少存在2个\;k,使得\;{a_{nk}}{X_{nk}} > {b_n}} \right). \end{array} $

$ \begin{array}{l} P\left( {\mathop {\max }\limits_{1 \le k \le n} \left| {S_{nk}^{\left( 2 \right)}} \right| > \frac{{n\beta }}{4}} \right) = P\left( {\sum\limits_{i = 1}^n {X_{ni}^{\left( 2 \right)}} > \frac{{n\beta }}{4}} \right) \le \\ \;\;\;\;\;\;\;\;\;\;\sum\limits_{1 \le {i_1} < {i_2} \le n} {P\left( {{a_{n{i_1}}}{X_{n{i_1}}} > {b_n},{a_{n{i_2}}}{X_{n{i_2}}} > {b_n}} \right)} \le \\ \;\;\;\;\;\;\;\;\;\;\sum\limits_{1 \le {i_1} < {i_2} \le n} {\prod\limits_{{\rm{j}} = 1}^2 {P\left( {{a_{n{i_j}}}{X_{n{i_j}}} > {b_n}} \right)} } \le \\ \;\;\;\;\;\;\;\;\;\;{\left( {\sum\limits_{i = 1}^n {P\left( {\left| {{a_{ni}}X} \right| > {b_n}} \right)} } \right)^2} \le \\ \;\;\;\;\;\;\;\;\;\;{\left( {\sum\limits_{i = 1}^n {b_n^{ - 2}E{{\left| {{a_{ni}}X} \right|}^2}} } \right)^2} \ll \\ \;\;\;\;\;\;\;\;\;\;{\left( {b_n^{ - 2}\sum\limits_{i = 1}^n {{{\left| {{a_{ni}}} \right|}^2}} } \right)^2} \ll {\left( {b_n^{ - 2}\exp \left( { - {{\ln }^\alpha }n} \right)} \right)^2}. \end{array} $

所以

$ \begin{array}{l} {I_2} = \sum\limits_{n = 1}^\infty {\exp \left( {{{\ln }^\alpha }n} \right)\frac{{{{\ln }^{\alpha - 1}}n}}{{{n^2}}}P\left( {\sum\limits_{i = 1}^n {X_{ni}^{\left( 2 \right)}} > \frac{{n\beta }}{4}} \right)} \ll \\ \;\;\;\;\;\;\;\sum\limits_{n = 1}^\infty {\exp \left( {{{\ln }^\alpha }n} \right)\frac{{{{\ln }^{\alpha - 1}}n}}{{{n^2}}} \cdot b_n^{ - 4} \cdot {{\left( {\exp \left( { - {{\ln }^\alpha }n} \right)} \right)}^2}} \ll \\ \;\;\;\;\;\;\;\sum\limits_{n = 1}^\infty {\exp \left( { - {{\ln }^\alpha }n} \right)\frac{{{{\ln }^{3\alpha - 1}}n}}{{{n^6}}} < \infty } . \end{array} $

对于I3,根据Xni(3)的定义, Xni(3) < 0, Snk(3) < 0, 同理可得I3 < ∞.

最后证I4 < ∞.根据Xni(4)的定义,

$ \begin{array}{l} P\left( {\mathop {\max }\limits_{1 \le k \le n} S_{nk}^{\left( 4 \right)} > \frac{{n\beta }}{4}} \right) = P\left( {\sum\limits_{i = 1}^n {X_{ni}^{\left( 4 \right)}} > \frac{{n\beta }}{4}} \right) \le \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;P\left( {\bigcup\limits_{i = 1}^n {\left( {\left| {{a_{ni}}{X_{ni}}} \right| > n} \right)} } \right) \le \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\sum\limits_{i = 1}^n {P\left( {\left| {{a_{ni}}{X_{ni}}} \right| > n} \right)} . \end{array} $

Inj={iJ; (j+1)-1 < |ani|≤j-1}, j=1, 2, …, 则有$\mathop \cup \limits_{j \ge 1} {I_{nj}} = J$, 由文献[10]有

$ \sum\limits_{j = 1}^\infty {\# {I_{nj}}} \le n\left( {k + 1} \right). $

$ \begin{array}{l} \sum\limits_{i = 1}^n {P\left( {\left| {{a_{ni}}{X_{ni}}} \right| > n} \right)} \ll \sum\limits_{j = 1}^\infty {\sum\limits_{i \in {I_{nj}}} {P\left( {\left| X \right| > jn} \right)} } = \\ \;\;\;\;\;\;\sum\limits_{j = 1}^\infty {\left( {\# {I_{nj}}} \right)\sum\limits_{k \ge jn} {P\left( {k < \left| X \right| \le k + 1} \right)} } = \\ \;\;\;\;\;\;\sum\limits_{k = n}^\infty {\sum\limits_{j = 1}^{\left[ {k/n} \right]} {\left( {\# {I_{nj}}} \right)P\left( {k < \left| X \right| \le k + 1} \right)} } \ll \\ \;\;\;\;\;\;\sum\limits_{k = n}^\infty {n\left( {\frac{k}{n} + 1} \right)P\left( {k < \left| X \right| \le k + 1} \right)} = \\ \;\;\;\;\;\;\sum\limits_{k = n}^\infty {\left( {k + n} \right)P\left( {k < \left| X \right| \le k + 1} \right)} . \end{array} $

所以,

$ \begin{array}{l} {I_4} \ll \sum\limits_{n = 1}^\infty {\exp \left( {{{\ln }^\alpha }n} \right)\frac{{{{\ln }^{\alpha - 1}}n}}{{{n^2}}}} \sum\limits_{k = n}^\infty {\left( {k + n} \right)P\left( {k < \left| X \right| \le k + 1} \right)} \ll \\ \;\;\;\;\;\;\;\sum\limits_{n = 1}^\infty {\exp \left( {{{\ln }^\alpha }n} \right)\frac{{{{\ln }^{\alpha - 1}}n}}{{{n^2}}}} \sum\limits_{k = n}^\infty {kP\left( {k < \left| X \right| \le k + 1} \right)} = \\ \;\;\;\;\;\;\;\sum\limits_{k = 1}^\infty {kP\left( {k < \left| X \right| \le k + 1} \right)} \sum\limits_{n = 1}^\infty {\exp \left( {{{\ln }^\alpha }n} \right)\frac{{{{\ln }^{\alpha - 1}}n}}{{{n^2}}}} \approx \\ \;\;\;\;\;\;\;\sum\limits_{k = 1}^\infty {k\exp \left( {{{\ln }^\alpha }k} \right)EI\left( {k < \left| X \right| \le k + 1} \right)} \approx \\ \;\;\;\;\;\;\;\sum\limits_{k = 1}^\infty {E\left| X \right|\exp \left( {{{\ln }^\alpha }\left| X \right|} \right)I\left( {k < \left| X \right| \le k + 1} \right)} \approx \\ \;\;\;\;\;\;\;E\left| X \right|\exp \left( {{{\ln }^\alpha }\left| X \right|} \right) < \infty . \end{array} $

现在, 证明式(2)⇒式(1).显然, 式(2) 蕴含着

$ \sum\limits_{n = 1}^\infty {\exp \left( {{{\ln }^\alpha }n} \right)\frac{{{{\ln }^{\alpha - 1}}n}}{{{n^2}}}} P\left( {\mathop {\max }\limits_{1 \le k \le n} \left| {{a_{nk}}{X_{nk}}} \right| > n} \right) < \infty . $ (3)

则有

$ P\left( {\mathop {\max }\limits_{1 \le k \le n} \left| {{a_{nk}}{X_{nk}}} \right| > n} \right) \to 0,n \to \infty . $

因此, 对于足够大的n,有

$ P\left( {\mathop {\max }\limits_{1 \le k \le n} \left| {{a_{nk}}{X_{nk}}} \right| > n} \right) < \frac{1}{2}. $

由引理1得{aniXni}仍然为两两NQD阵列.由引理3, 有

$ \sum\limits_{k = 1}^n {P\left( {\left| {{a_{nk}}{X_{nk}}} \right| > n} \right)} \le 8P\left( {\mathop {\max }\limits_{1 \le k \le n} \left| {{a_{nk}}{X_{nk}}} \right| > n} \right). $ (4)

由式(3) 及式(4), 有

$ \sum\limits_{n = 1}^\infty {\exp \left( {{{\ln }^\alpha }n} \right)\frac{{{{\ln }^{\alpha - 1}}n}}{{{n^2}}}} \sum\limits_{k = 1}^n {P\left( {\left| {{a_{nk}}{X_{nk}}} \right| > n} \right) < \infty } . $

根据I4 < ∞的证明过程,

$ \begin{array}{l} E\left| X \right|\exp \left( {{{\ln }^\alpha }\left| X \right|} \right) \approx \\ \;\;\;\;\;\;\;\sum\limits_{n = 1}^\infty {\exp \left( {{{\ln }^\alpha }n} \right)\frac{{{{\ln }^{\alpha - 1}}n}}{{{n^2}}}} \sum\limits_{k = 1}^n {P\left( {\left| {{a_{nk}}{X_{nk}}} \right| > n} \right)} \le \\ \;\;\;\;\;\;\;8\sum\limits_{n = 1}^\infty {\exp \left( {{{\ln }^\alpha }n} \right)\frac{{{{\ln }^{\alpha - 1}}n}}{{{n^2}}}} \sum\limits_{k = 1}^n {P\left( {\left| {{a_{nk}}{X_{nk}}} \right| > n} \right) < \infty } . \end{array} $

证毕.

  文献[9]定理1.3描述的是一类NA随机变量序列的完全收敛性定理,本文将此定理推广到更一般的行为两两NQD随机变量阵列加权和的情形,在增加权条件的基础上,通过采用不同的截尾方法,亦得到了类似的结论.

参考文献
[1] LEHMAMN E L. Some concepts of dependence[J]. Ann Math Stat, 1966, 37: 1137–1153. DOI:10.1214/aoms/1177699260
[2] JOAG-DEVK, PROSCHAN F. Negative association of random variables with applications[J]. Ann-Statist, 1983(11): 286–295.
[3] 吴群英. 两两NQD列的收敛性质[J]. 数学学报, 2002, 45(3): 617–624.
WU Q Y. Convergence properties of pairwise NQD random sequences[J]. Acta Mathematica Sinica, 2002, 45(3): 617–624.
[4] 陈平炎. 两两NQD随机序列的Lr收敛性[J]. 数学物理学报:A辑, 2008, 28(3): 447–453.
CHEN P Y. Lrconvergence for pairwise NQD random variables[J]. Acta Mathematica Scientia:SerA, 2008, 28(3): 447–453.
[5] 方炜, 郭明乐. 行为两两NQD阵列加权和的矩完全收敛性[J]. 工程数学学报, 2013, 30(5): 761–772.
FANG W, GUO M L. Complete moment convergence of weighted sums for arrays of row-wise pairwise NQD random variables[J]. Chinese Journal of Engineering Mathematics, 2013, 30(5): 761–772.
[6] 邱德华, 甘师信. 两两NQD列随机变量序列的完全收敛性[J]. 武汉大学学报:理学版, 2013, 59(3): 285–290.
QIU D H, GAN S X. Complete convergence for sequence of pairwise NQD random variables[J]. Journal of Wuhan University:Natural Sciences Edition, 2013, 59(3): 285–290.
[7] MI-HWA K. On Complete convergence for weighted sums of pairwise negatively quadrant dependent sequences[J]. Communications of Korean Statistical Society, 2012, 19(2): 247–256.
[8] GUT A, STADTMULLER U. An intermediate Baum-Katz theorem[J]. Statist Probab Lett, 2011(10): 1486–1492.
[9] WU Q Y, JIANG Y Y. Complete convergence and complete moment convergence for negatively associated sequences of random variables[J]. Journal of Inequalities and Applications, 2016(1): 1–10.
[10] LI D L, RAO M B, WANG X C. Complete convergence of moving average processes[J]. Statist Probab Lett, 1992(14): 111–114.