浙江大学学报(理学版), 2022, 49(1): 27-35 doi: 10.3785/j.issn.1008-9497.2022.01.004

数学与计算机科学

具有时变系数和吸收项的非线性非局部反应扩散系统解的爆破

欧阳柏平,,

广州华商学院 数据科学学院,广东 广州 511300

Blow-up of solutions to a nonlinear nonlocal reaction-diffusion system with time-dependent coefficients and inner absorption terms

OUYANG Baiping,,

College of Data Science,Guangzhou Huashang College,Guangzhou 511300,China

收稿日期: 2020-12-15  

基金资助: 国家自然科学基金资助项目.  11371175
广东省普通高校创新团队项目.  2020WCXTD008
广东财经大学华商学院校内项目.  2020HSDS01
广州市哲学社会科学发展“十三五”规划课题.  2019G2GJ209

Received: 2020-12-15  

作者简介 About authors

欧阳柏平(1979—),ORCID:https://orcid.org/0000-0001-6464-1489,男,硕士,讲师,主要从事偏微分方程研究,E-mail:oytengfei79@tom.com. , E-mail:oytengfei79@tom.com

摘要

研究了非线性边界条件下具有时变系数和吸收项的非线性非局部反应扩散系统解的全局存在性和爆破问题。采用Sobolev不等式及其他微分不等式方法,构造能量表达式,在一定条件下得到了其所满足的微分不等式,进而推出了解的全局存在性和爆破发生时解的爆破时间下界估计。

关键词: 全局存在性 ; 爆破 ; 反应扩散系统 ; 时变系数 ; 吸收项

Abstract

Global existence and blow-up of solutions to a nonlinear nonlocal reaction-diffusion system with time-dependent coefficients and inner absorption terms under nonlinear boundary conditions are studied.Energy expressions are formulated.By using the technique of Sobolev inequalities and other differential ones,the energy satisfying a differential inequality under certain conditions is deduced.Finally,the global existence and lower bound estimates of blow up time are obtained respectively.

Keywords: global existence ; blow-up ; reaction-diffusion system ; time-dependent coefficient ; absorption term

PDF (490KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

欧阳柏平. 具有时变系数和吸收项的非线性非局部反应扩散系统解的爆破. 浙江大学学报(理学版)[J], 2022, 49(1): 27-35 doi:10.3785/j.issn.1008-9497.2022.01.004

OUYANG Baiping. Blow-up of solutions to a nonlinear nonlocal reaction-diffusion system with time-dependent coefficients and inner absorption terms. Journal of Zhejiang University(Science Edition)[J], 2022, 49(1): 27-35 doi:10.3785/j.issn.1008-9497.2022.01.004

0 引 言

近年来,已有很多研究针对局部和非局部抛物方程和抛物系统解的全局存在性和爆破问题。一般而言,解的全局存在性和爆破取决于方程的非线性、空间维数、初始数据以及边界条件。文献[1-6]考虑了三维空间中解在齐次边界条件(Dirichlet条件和Neumann条件)和Robin边界下的全局存在性和爆破问题。文献[7-17]研究了高维空间中解在非线性边界条件下的全局存在性和爆破问题。文献[18-25]对具有时变或空变系数的局部和非局部抛物方程和抛物系统解的全局性和爆破进行了研究。文献[26-28]考虑了其他偏微分方程解的爆破问题。从某种程度上,非局部的数学模型比局部的数学模型更具实际应用价值,因而探讨非局部的抛物方程和抛物系统解的全局存在性和爆破有较强的理论价值和实际意义。由于局部数学模型的理论和数学方法不适用于非局部数学模型,因此对于非局部数学模型的研究有较大的挑战。目前,关于爆破发生时解的爆破时间上下界估计的研究,考虑上界的方法较多,而考虑下界的较少。

文献[17]研究了具有时变系数的反应扩散系统爆破问题:

ut=u+k1tf1v,    x,tΩ×0,t*,vt=v+k2tf2u,    x,tΩ×0,t*

在齐次Dirichlet边界条件下,得到解在有限时间内爆破的条件。同时推出了解的爆破时间上界估计和在二维和三维空间中解的爆破时间下界估计。

文献[19]研究了具有时变系数的局部反应扩散系统爆破问题:

ut=u+k1tupvq,    x,tΩ×0,t*,vt=v+k2tvrus,    x,tΩ×0,t*

在齐次Dirichlet边界条件下,得到解的爆破条件以及在2种测度下解在高维空间中爆破时间下界估计。

文献[25]研究了具有空变系数的非局部反应扩散系统爆破问题:

ut=div (a(x)u)+Ωupvqdx,  x,tΩ×0,t*,vt=div (b(x)v)+Ωvrusdx,  x,tΩ×0,t*, 

其中,axb(x)是光滑有界正函数。采用微分不等式方法,得到全空间中解的爆破时间下界估计。

文献[17]研究了具有吸收项的半线性抛物问题:

ut=u-fu,    x,tΩ×0,t*

在齐次Neumann边界条件下,采用微分不等式方法和某些假设条件,得到解的全局存在性和爆破时间上界估计以及三维空间中爆破发生时解的爆破时间下界估计。

受以上文献启发,本文研究非线性边界条件下具有时变系数和吸收项的非线性非局部反应扩散系统解的全局存在性和爆破问题:

ut=u+k1tupΩvqdx-uα,    x,tΩ×0,t*,vt=v+k2tvrΩusdx-vβ,    x,tΩ×0,t*,un=g1u,    vn=g2u,    x,tΩ×0,t*,ux,0=u0x0,    vx,0=v0x0,    xΩ,

其中,Ω是高维空间R n(n3)中的有界凸区域,表示拉普拉斯算子Ω是区域Ω的边界, t*表示可能的爆破时间。unvn分别是uv在边界Ω上的外法向量的导数,假设其足够光滑。

目前,尚未发现关于式(1)的解的全局存在性和爆破问题的文献研究。其困难在于如何处理高维空间、非局部项、吸收项以及非线性边界条件对解的全局存在性和爆破影响。采用高维空间中的Sobolev嵌入不等式以及相关的微分不等式方法,得到高维空间中非线性边界条件下解的全局存在性和爆破发生时解的爆破时间的下界估计。

1 全局存在性

引理116ΩRn(n3)上的有界凸区域,则对于uC1Ω,s>0,

ΩusdAnρ0Ωusdx+sdρ0Ωus-1|u|dx

其中,

ρ0=minxΩ (xn),    d=maxxΩ |x|

引理229 Sobolev不等式:

Ωuσnn-2dxC2nn-22nn-2-1Ωuσdxnn-2+Ωuσ22dxnn-2
Ωvσnn-2dxC2nn-22nn-2-1Ωvσdxnn-2+Ωvσ22dxnn-2

其中,C=C(n,Ω)是与nΩ有关的Sobolev嵌入常数。

定理1 假设

0gi(ξ)biξsi,    ξ>0bi>0,si>1
pqrs>1,α>max {p+q,r+s,2s1-1},
β>max p+q,r+s,2s2-1,ki'tkit-li,li>0(i=1,2),    kit>0,t0,

则在任何有限时间式(1)的解均有界,即式(1)是全局存在的。

证明 首先,定义辅助函数:

φt=k1tΩuσdx+k2tΩvσdx

其中,σ>1

运用散度定理,对式(6)求导数,结合式(5),得

φ'(t)=k1'tΩuσdx+σk1tΩuσ-1utdx+k2'tΩvσdx+σk2tΩvσ-1vtdx-lφt+σk1tΩuσ-1udx+σk12tΩuσ+p-1dxΩvqdx-σk1tΩuσ+α-1dx+σk2tΩvσ-1vdx+σk22tΩvσ+r-1dxΩusdx-σk2tΩvσ+β-1dx,

其中,l=min{l1,l2}

对于式(7)右边第2项,由散度定理和式(2),有

Ωuσ-1udx=Ωuσ-1undA-Ωuuσ-1dxb1Ωuσ+s1-1dA-4(σ-1)σ2Ωuσ22dxnb1ρ0Ωuσ+s1-1dx+(σ+s1-1)db1ρ0Ωuσ+s1-2|u|dx-4(σ-1)σ2Ωuσ22dx

对于式(8)右边第2项,由Hölder不等式和Young不等式,得

Ωuσ+s1-2udx12ε1Ωuσ+2s1-2dx+2ε1σ2Ωuσ22dx,

其中ε1为正数。于是,由式(8)和式(9),得到

σk1tΩuσ-1udxr1k1tΩuσ+s1-1dx+r2k1tΩuσ+2s1-2dx+r3k1tΩuσ22dx

其中,r1=σnb1ρ0,r2=σ(σ+s1-1)db1ρ012ε1,r3=(σ+s1-1)db1ρ02ε1σ-4σ-1σ

对于式(7)右边第5项,重复式(8)~式(10)的推导,可得

σk2tΩvσ-1vdxλ1k2tΩvσ+s2-1dx+λ2k2tΩvσ+2s2-2dx+λ3k2tΩvσ22dx

其中,λ1=σnb2ρ0,λ2=σ(σ+s2-1)db2ρ012ε2,λ3=(σ+s2-1)db2ρ02ε2σ-4σ-1σε2为正数。

对于式(7)右边第3项,由Hölder不等式和Young不等式,有

σk12tΩuσ+p-1dxΩvqdxσ|Ω|k12tΩuσ+p+q-1dxσ+p-1σ+p+q-1×Ωvσ+p+q-1dxqσ+p+q-1k˜(t)σ+p-1σ+p+q-1k1tΩuσ+p+q-1dx+k˜(t)qσ+p+q-1k2tΩvσ+p+q-1dx,

其中, k˜(t)=σ|Ω|k12-σ+p-1σ+p+q-1tk2-qσ+p+q-1t

同样,对于式(7)右边第6项,由Hölder 不等式和Young不等式,有

σk22tΩvσ+r-1dxΩusdxσ|Ω|k22tΩvσ+r+s-1dxσ+r-1σ+r+s-1×Ωuσ+r+s-1dxsσ+r+s-1k˜˜(t)σ+r-1σ+r+s-1k2tΩvσ+r+s-1dx+k˜˜(t)sσ+r+s-1k1tΩvσ+r+s-1dx,

其中, k˜˜(t)=σ|Ω|k22-r+s-1σ+r+s-1tk1-sσ+r+s-1t

联立式(7)、式(10)~式(13),有

φ't-lφt+r1k1tΩuσ+s1-1dx+r2k1tΩuσ+2s1-2dx+r3k1tΩuσ22dx+k˜(t)σ+p-1σ+p+q-1k1tΩuσ+p+q-1dx+k˜(t)qσ+p+q-1k2tΩvσ+p+q-1dx-σk1tΩuσ+α-1dx+λ1k2tΩvσ+s2-1dx+λ2k2tΩvσ+2s2-2dx+λ3k2tΩvσ22dx+k˜˜tσ+r-1σ+r+s-1k2tΩvσ+r+s-1dx+k˜˜tsσ+r+s-1k1tΩuσ+r+s-1dx-σk2tΩvσ+β-1dx

选取合适的ε1ε2,使得r30λ30,于是,式(14)可化为

φ't-lφt+r1k1tΩuσ+s1-1dx+r2k1tΩuσ+2s1-2dx+k˜(t)σ+p-1σ+p+q-1k1tΩuσ+p+q-1dx+k˜tqσ+p+q-1k2tΩvσ+p+q-1dx-σk1tΩuσ+α-1dx+λ1k2tΩvσ+s2-1dx+λ2k2tΩvσ+2s2-2dx+k˜˜tσ+r-1σ+r+s-1k2tΩvσ+r+s-1dx+k˜˜tsσ+r+s-1k1tΩuσ+r+s-1dx-σk2tΩvσ+β-1dx

由Hölder不等式和Young不等式,得

Ωuσ+s1-1dx12Ωuσ+2s1-2dx+12Ωuσdx,
Ωuσ+2s1-2dx2s1-2α-1ε3Ωuσ+α-1dx+α-2s1+1α-1ε3-2s1-2α-2s1+1Ωuσdx,
Ωuσ+p+q-1dxp+q-1α-1ε4Ωuσ+α-1dx+α-p-qα-1ε4-p+q-1α-p-qΩuσdx,
Ωuσ+r+s-1dxr+s-1α-1ε̌Ωuσ+α-1dx+α-r-sα-1ε̌- r+s-1α-r-sΩuσdx,
Ωvσ+s2-1dx12Ωvσ+2s2-2dx+12Ωvσdx,
Ωvσ+2s2-2dx2s2-2β-1ε5Ωvσ+β-1dx+β-2s2+1β-1ε5-2s2-2β-2s2+1Ωvσdx,
Ωvσ+r+s-1dxr+s-1β-1ε6Ωvσ+β-1dx+β-r-sβ-1ε6-r+s-1β-r-sΩvσdx,
Ωvσ+p+q-1dxp+q-1β-1ε˜Ωvσ+β-1dx+β-p-qβ-1ε˜- p+q-1β-p-qΩvσdx,

其中,ε3ε4ε5ε6ε̌ε˜为正数。联立式(15)~式(23),有

φ't-l+r4+λ4φt+r5-σk1tΩuσ+α-1dx+ (λ5-σ)k2tΩvσ+β-1dx,

其中,

r4=12r1+α-2s1+1α-1ε3-2s1-2α-2s1+1r2+12r1+α-p-qα-1ε4-p+q-1α-p-qk˜tσ+p-1σ+p+q-1+α-r-sα-1ε̌- r+s-1α-r-sk˜˜tsσ+r+s-1
λ4=12λ1+β-2s2+1β-1ε5-2s2-2β-2s2+112λ1+λ2+β-r-sβ-1ε6-r+s-1β-r-sk˜˜tsσ+r+s-1+β-p-qβ-1ε˜- p+q-1β-p-qk˜tqσ+p+q-1
r5=2s1-2α-1ε3r2+12r1+p+q-1α-1ε4k˜tσ+p-1σ+p+q-1+r+s-1α-1ε̌k˜˜tsσ+r+s-1
λ5=2s2-2β-1ε512λ1+λ2+r+s-1β-1ε6k˜˜tsσ+r+s-1+p+q-1β-1ε˜k˜tqσ+p+q-1

由Hölder不等式,可知

Ωuσ+α-1dxΩuσdxσ+α-1σ|Ω|1-ασ
Ωvσ+β-1dxΩvσdxσ+β-1σ|Ω|1-βσ

联立式(24)~式(26),得

φ't-l+r4+λ4φt-σ-r5[k1t]1-ασk1tΩuσdxσ+α-1σ×Ω1-ασ-σ-λ5[k2t]1-βσ×k2tΩvσdxσ+β-1σΩ1-βσ

选取合适的ε3ε4ε5ε6ε̌ε˜,使得σ-r5>0,σ-λ5>0

K1=min{σ-r5,σ-λ5}

K2=min[k1(t)]1-ασ|Ω|1-ασ,[k2t]1-βσ|Ω|1-βσ
K3=minα-1σ,β-1σ

式(27),可得

φ't-l+r4+λ4φt-CK1K2 φt1+K3=φt-l+r4+λ4-CK1K2 φtK3

其中C为正常数。

式(28)表明,uφt测度下对于任意的t (t>0)都不会爆破。事实上,如果在某个时间t*爆破,即

limt(t*)- φt=+

式(28),对任意的t[t0,t*),有φ't0,从而φtφ(t0)。当t(t*)-时,取极限,有

limt(t*)- φt=+φ(t0),

矛盾。定理1得证。

2 解的爆破时间的下界

假设

0gi(ξ)biξsi,    ξ>0bi>0,si>1
α>max {p+q,r+s,2s1-1},    pqrs>1,
β>max {p+q,r+s,2s2-1},    ki'tkitai,ai>0(i=1,2),    kit>0,t0

构造辅助函数:

ϕt=k1δtΩuσdx+k2δtΩvσdx

其中σ>n(p+q-1)2,n(r+s-1)2, δ>1

有如下定理:

定理2 假设u(x,t)v(x,t)式(1)、式(29)在有界凸区域Ω的经典非负解,则式(30)中定义的能量满足:

ϕ'tK7ϕt+2K5t ϕtξ1+2K6t ϕtξ2,

因此,爆破时间t*的下界为

t*Θ-1S,
Θ-1Θ

证明 运用散度定理,对式(30)求导数,由式(29),得

ϕ'(t)=δk1δ-1tk1'tΩuσdx+σk1δtΩuσ-1utdx+δk2δ-1tk2't×Ωvσdx+σk2δtΩvσ-1vtdxδaϕt+σk1δtΩuσ-1udx+σk1δ+1tΩuσ+p-1dxΩvqdx-σk1δtΩuσ+α-1dx+σk2δtΩvσ-1vdx+σk2δ+1tΩvσ+r-1dxΩusdx-σk2δtΩvσ+β-1dx ,

其中,a=max{a1,a2}。于是,由式(8)和式(9),得

σk1δtΩuσ-1udxr1k1δtΩuσ+s1-1dx+r2k1δtΩuσ+2s1-2dx+r3k1δtΩuσ22dx

其中,r1=σnb1ρ0,r2=σ(σ+s1-1)db1ρ012ε1,r3=(σ+s1-1)db1ρ02ε1σ-4(σ-1)σ

同理,可得

σk2δtΩvσ-1vdxλ1k2δtΩvσ+s2-1dx+λ2k2δtΩvσ+2s2-2dx+λ3k2δtΩvσ22dx

其中,λ1=σnb2ρ0,λ2=σ(σ+s2-1)db2ρ012ε2,λ3=(σ+s2-1)db2ρ02ε2σ-4(σ-1)σ,ε2为正数。

对于式(31)右边第3项,由Hölder不等式和Young不等式,有

σk1δ+1tΩuσ+p-1dxΩvqdxσ|Ω|k1δ+1tΩuσ+p+q-1dxσ+p-1σ+p+q-1×Ωvσ+p+q-1dxqσ+p+q-1k˜(t)σ+p-1σ+p+q-1k1δtΩuσ+p+q-1dx+k˜(t)qσ+p+q-1k2δtΩvσ+p+q-1dx

其中,k˜(t)=σ|Ω|k1δ+1-σ+p-1σ+p+q-1tk2-qσ+p+q-1t

同样,对于式(31)右边第6项,由Hölder 不等式和Young不等式,有

σk2δ+1tΩvσ+r-1dxΩusdxσ|Ω|k2δ+1tΩvσ+r+s-1dxσ+r-1σ+r+s-1×Ωuσ+r+s-1dxsσ+r+s-1k˜˜(t)σ+r-1σ+r+s-1k2δtΩvσ+r+s-1dx+k˜˜(t)sσ+r+s-1k1δtΩuσ+r+s-1dx,

其中, k˜˜(t)=σ|Ω|k2δ+1-r+s-1σ+r+s-1tk1-sσ+r+s-1t

联立式(31)、式(33)~式(35),有

ϕ'tδaϕt+r1k1δtΩuσ+s1-1dx+r2k1δtΩuσ+2s1-2dx+r3k1δtΩuσ22dx+k˜(t)σ+p-1σ+p+q-1k1δtΩuσ+p+q-1dx+k˜(t)qσ+p+q-1k2δtΩvσ+p+q-1dx-σk1δtΩuσ+α-1dx+λ1k2δtΩvσ+s2-1dx+λ2k2δtΩvσ+2s2-2dx+λ3k2δtΩvσ22dx+k˜˜tσ+r-1σ+r+s-1k2δtΩvσ+r+s-1dx+k˜˜tsσ+r+s-1k1δtΩuσ+r+s-1dx-σk2δtΩvσ+β-1dx

由Hölder 不等式,可得

Ωuσ+2s1-2dx ε7Ωuσ+α-1dxx10 ε7-x10x20Ωuσdxx20x10 ε7Ωuσ+α-1dx+x20 ε7-x10x20Ωuσdx
Ωvσ+2s2-2dx ε8Ωvσ+β-1dxy10 ε8-y10y20Ωvσdxy20y10 ε8Ωvσ+β-1dx+y20 ε8-y10y20Ωvσdx

其中,x10=2s1-2α-1,x20=α+1-2s1α-1,y10=2s2-2α-1,y20=α+1-2s2α-1, ε7, ε8为常数。

式(16)、式(20)、式(36)~(38),可得

ϕ't(δa+K1+K2)ϕt+k˜tσ+p-1σ+p+q-1k1δtΩuσ+p+q-1dx+k˜tqσ+p+q-1k2δtΩvσ+p+q-1dx+12r1+r2x10 ε7-σk1δtΩuσ+α-1dx+r3k1δtΩuσ22dx+λ3k2δtΩvσ22dx+k˜˜tσ+r-1σ+r+s-1k2δtΩvσ+r+s-1dx+k˜˜tsσ+r+s-1k1δtΩuσ+r+s-1dx+12λ1+λ2y10 ε8-σk2δtΩvσ+β-1dx

其中, K1=12r1+12r1+r2x20 ε7-x10x20,

K2=12λ1+y20 ε8-y10y2012λ1+λ2

选取合适的ε7,ε8,使得12r1+r2x10 ε7-σ0,12λ1+λ2y10 ε8-σ0。于是,

ϕ't(δa+K1+K2)ϕt+k˜tσ+p-1σ+p+q-1k1δtΩuσ+p+q-1dx+k˜tqσ+p+q-1k2δtΩvσ+p+q-1dx+r3k1δtΩuσ22dx+λ3k2δtΩvσ22dx +k˜˜tσ+r-1σ+r+s-1×k2δtΩvσ+r+s-1dx+k˜˜tsσ+r+s-1k1δtΩuσ+r+s-1dx

由Hölder不等式和式(3),有

Ωuσ+p+q-1dxΩuσnn-2dxx11Ωuσdxx21C2nn-22nn-2-1x11Ωuσdxnx11n-2+Ωuσ22dxnx11n-2Ωuσdxx21r4Ωuσdxnx11n-2+x21+r4Ωuσ22dxnx11n-2×Ωuσdxx21r4Ωuσdxnx11n-2+x21+r5Ωuσ22dx+r6Ωuσdx(n-2)x21n-2-nx11

其中,x11=p+q-1(n-2)2σ,x21=2σ-p+q-1(n-2)2σ,r4=C2nn-22nn-2-1x11,r5=r4nx11n-2ε9,r6=r4n-2-nx11n-2ε9-nx11n-2-nx11, ε9为常数。

类似于式(41)的推导,由Hölder不等式、式(3)~式(4),可得

Ωuσ+r+s-1dxr7Ωuσdxnx12n-2+x22+r8Ωuσ22dx+r9Ωuσdx(n-2)x22n-2-nx12
Ωvσ+p+q-1dxλ4Ωvσdxny11n-2+y21+λ5Ωvσ22dx+λ6Ωvσdx(n-2)y21n-2-ny11
Ωvσ+r+s-1dxλ7Ωvσdxny12n-2+y22+λ8Ωvσ22dx+λ9Ωvσdx(n-2)y22n-2-ny12

其中,

x12=r+s-1(n-2)2σ,x22=2σ-r+s-1(n-2)2σ,r7=C2nn-22nn-2-1x12,    r8=r7nx12n-2ε10,r9=r7n-2-nx12n-2ε10-nx12n-2-nx12,
y11=(p+q-1)(n-2)2σ,y21=2σ-(p+q-1)(n-2)2σ,λ4=C2nn-22nn-2-1y11,    λ5=λ4ny11n-2ε11,λ6=λ4n-2-ny11n-2ε11-ny11n-2-ny11,y12=r+s-1(n-2)2σ,y22=2σ-r+s-1(n-2)2σ,
λ7=C2nn-22nn-2-1y12,    λ8=λ7ny12n-2ε12,r9=λ7n-2-ny12n-2ε12-ny12n-2-ny12, 

ε10, ε11, ε12为常数。联立式(40)~式(44),得

ϕ't(δa+K1+K2)ϕt+K3k1δtΩuσ22dx+K4k2δtΩvσ22dx+k˜tr4k1-2x11n-2δtk1δtΩuσdxnx11n-2+x21+k˜tr6k1-2x11n-2-nx11δtk1δtΩuσdx(n-2)x21n-2-nx11+k˜˜tr7k1-2x12n-2δtk1δtΩuσdxnx12n-2+x22+k˜˜tr9k1-2x12n-2-nx12δtk1δtΩuσdx(n-2)x22n-2-nx12+k˜tλ4k2-2y11n-2δtk2δtΩvσdxny11n-2+y21+k˜tλ6k2-2y11n-2-ny11δtk2δtΩvσdx(n-2)y21n-2-ny11+k˜˜tλ7k2-2y12n-2δtk2δtΩvσdxny12n-2+y22+k˜˜tλ9k2-2y12n-2-ny12δtk2δtΩvσdx(n-2)y22n-2-ny12K7ϕt+K3k1δtΩuσ22dx+K4k2δtΩvσ22dx+2K5t ϕtξ1+2K6t ϕtξ2,

其中,

K3=r3+k˜tσ+p-1σ+p+q-1r5+k˜˜tsσ+r+s-1r8, K4=λ3+k˜tqσ+p+q-1λ5+k˜˜tσ+r-1σ+r+s-1λ8,
K5t= k˜tr4k1-2x11n-2δt+k˜˜tr7k1-2x12n-2δt+k˜tλ4k2-2y11n-2δt+k˜˜tλ7k2-2y12n-2δt
ξ1=max nx11n-2+x21,nx12n-2+x22,ny11n-2+y21,ny12n-2+y22>1
K6t= k˜tr6k1-2x11n-2-nx11δt+k˜˜tr9k1-2x12n-2-nx12δt+k˜tλ6k2-2y11n-2-ny11δt+k˜˜tλ9k2-2y12n-2-ny12δt
K7=δa+K1+K2
ξ2=max (n-2)x21n-2-nx11,(n-2)x22n-2-nx12,(n-2)y21n-2-ny11,(n-2)y22n-2-ny12>1

选取合适的 ε1, ε2, ε9, ε10, ε11, ε12,使得K30K40。于是,式(45)可化为

ϕ'tK7ϕt+2K5t ϕtξ1+2K6t ϕtξ2,

Θt*=0t*K(τ)dτ

其中,Kt=1+K5(t)+K6(t)。对式(46)从0t*积分,有

Θt*ϕ01K7η+2ηξ1 +2ηξ2 dη=S

因为ξi>1 (i=1,2),所以式(47)右边积分存在。易知,Θt*是单调递增函数,于是有

t*Θ-1S,

其中Θ-1Θ

定理2得证。

http://dx.doi.org/10.3785/j.issn.1008-9497.2022.01.004

参考文献

PAYNE L EPHILIPPIN G ASCHAEFER P W.

Blow-up phenomena for some nonlinear parabolic problems

[J].Nonlinear Analysis:Theory,Methods & Applications,20086910):3495-3502. DOI:10. 1016/j.na.2007.09.035

[本文引用: 1]

李远飞.

Robin边界条件下更一般化的非线性抛物问题全局解的存在性和爆破

[J].应用数学学报,2018412):257-267.

LI Y F.

Blow-up and global existence of the solution to some more general nonlinear parabolic problems with Robin boundary conditions

[J].Acta Mathematicae Applicatae Sinica,2018412):257-267.

PAYNE L ESCHAEFER P W.

Lower bounds for blow-up time in parabolic problems under Dirichlet conditions

[J].Journal of Mathematical Analysis and Applications,20073282):1196-1205. DOI:10. 1016/j.jmaa.2006.06.015

PAYNE L ESCHAEFER P W.

Lower bounds for blow-up time in parabolic problems under Neumann conditions

[J].Applicable Analysis,20068510):1301-1311. DOI:10.1080/00036810600915730

LIU Y.

Blow-up phenomena for the nonlinear nonlocal porous medium equation under Robin boundary condition

[J].Computers & Mathematics with Applications,20136610):2092-2095. DOI:10. 1016/j.camwa.2013.08.024

DING J T.

Blow-up solutions and global existence for quasilinear parabolic problems with Robin boundary conditions

[J].Abstract and Applied Analysis,201420141-9. DOI:10.1155/2014/324857

[本文引用: 1]

LIU YLUO S GYE Y H.

Blow-up phenomena for a parabolic problem with a gradient nonlinearity under nonlinear boundary conditions

[J].Computers & Mathematics with Applications,2013658):1194-1199. DOI:10.1016/j.camwa.2013.02.014

[本文引用: 1]

LIU Z QFANG Z B.

Blow-up phenomena for a nonlocal quasilinear parabolic equation with time-dependent coefficients under nonlinear boundary flux

[J].Discrete and Continuous Dynamical Systems(Series B),20162110):3619-3635. DOI:10.3934/dcdsb. 2016113

SHEN X HDING J T.

Blow-up phenomena in porous medium equation systems with nonlinear boundary conditions

[J].Computers & Mathematics with Applications,20197712):3250-3263. DOI:10.1016/j.camwa.2019.02.007

LIU Y.

Lower bounds for the blow-up time in a non-local reaction diffusion problem under nonlinear boundary conditions

[J].Mathematical and Computer Modelling,2013573/4):926-931. doi:10.1016/j.mcm.2012.10.002

CHEN W HLIU Y.

Lower bound for the blow up time for some nonlinear parabolic equations

[J].Boundary Value Problems,201620161-6. DOI:10. 1016/j.mcm.2012.10.002

TANG G S.

Blow-up phenomena for a parabolic system with gradient nonlinearity under nonlinear boundary conditions

[J].Computers & Mathematics with Applications,2017743):360-368. DOI:10. 1016/j.camwa.2017.04.019

XIAO S PFANG Z B.

Blow-up phenomena for a porous medium equation with time-dependent coefficients and inner absorption term under nonlinear boundary flux

[J]. Taiwanese Journal of Mathematics,2018222):349-369. DOI:10.11650/tjm/170802

郑亚东方钟波.

一类具有时变系数梯度源项的弱耦合反应-扩散方程组解的爆破分析

[J].数学物理学报,202040A(3):735-755. DOI:10.3969/j.issn. 1003-3998.2020.03.020

ZHENG Y DFANG Z B.

Blow-up analysis for a weakly coupled reaction-diffusion system with gradient sources terms and time-dependent coefficients

[J]. Acta Mathematica Scientia,202040A(3):735-755. DOI:10.3969/j.issn.1003-3998.2020.03.020

李远飞.

非线性边界条件下高维抛物方程解的全局存在性及爆破现象

[J].应用数学学报,2019426):721-735.

LI Y F.

Blow-up phenomena and global existences for higher-dimensional parabolic equations under nonlinear boundary conditions

[J]. Acta Mathematicae Applicatae Sinica,2019426):721-735.

PAYNE L EPHILIPPIN G AVERNIER PIRO S.

Blow-up phenomena for a semilinear heat equation with nonlinear boundary condition,Ⅱ

[J].Nonlinear Analysis:Theory,Methods & Applications,2010734):971-978. DOI:10.1016/j.na.2010.04.023

[本文引用: 1]

PAYNE L EPHILIPPIN G AVERNIER PIRO S.

Blow-up phenomena for a semilinear heat equation with nonlinear boundary condition,Ⅰ

[J].Zeitschrift Für Angewandte Mathematik und Physik,2010616):999-1007. DOI:10.1007/s00033-010-0071-6

[本文引用: 3]

PAYNE L EPHILIPPIN G A.

Blow-up phenomena for a class of parabolic systems with time dependent coefficients

[J].Applied Mathematics,20123):325-330. DOI:10.4236/am.2012.34049

[本文引用: 1]

TAO X YFANG Z B.

Blow-up phenomena for a nonlinear reaction-diffusion system with time dependent coefficients

[J].Computers & Mathematics with Applications,20177410):2520-2528. DOI:10.1016/j.camwa.2017.07.037

[本文引用: 1]

LI Y FGUO L HZENG P.

The applications of sobolev inequalities in proving the existence of solution of the quasilinear parabolic equation

[J].Boundary Value Problems,202020201):156-164. DOI:10.1186/s1366-020-01452-y

DING J TSHEN X H.

Blow-up analysis in quasilinear reaction-diffusion problems with weighted nonlocal source

[J].Computers & Mathematics with Applications,2018754):1288-1301. DOI:10.1016/j.camwa.2017.11.009

张环方钟波.

一类具有空变系数的非线性反应-扩散方程组解的爆破时间下界

[J].中国海洋大学(自然科学版),201949S1):181-186. DOI:10.16441/j.cnki.hdxb.20170417

ZHANG HFANG Z B.

Lower bounds for a nonlinear reaction-diffusion system with space-dependent coefficients

[J].Periodical of Ocean University of China,201949S1):181-186. DOI:10.16441/j.cnki.hdxb.20170417

LIU D MMU C LXIN Q.

Lower bounds estimate for the blow-up time of a nonlinear nonlocal porous medium equation

[J]. Acta Mathematica Scientia,2012323):1206-1212. DOI:10.1016/S0252-9602(12)60092-7

FANG Z BYANG RCHAI Y.

Lower bounds estimate for the blow-up time of a slow diffusion equation with nonlocal source and inner absorption

[J].Mathematical Problems Engineering,201420142):1-6. DOI:10.1155/2014/764248

WANG NSONG X FLYU X S.

Estimates for the blowup time of a combustion model with nonlocal heat sources

[J].Journal of Mathematical Analysis and Applications,20164362):1180-1195. DOI:10. 1016/j.jmaa.2015.12.025

[本文引用: 2]

CHEN W HPALMIERI A.

Nonexistence of global solutions for the semilinear Moore-Gibson-Thompson equation in the conservative case

[J].Discrete & Continuous Dynamical Systems,2020409):5513-5540. DOI:10.3934/dcds.2020236

[本文引用: 1]

CHEN W HPALMIERI A.

Weakly coupled system of semilinear wave equations with distinct scale-invariant terms in the linear part

[J].Zeitschrift Für Angewandte Mathematik und Physik,20197067. DOI:10.1007/s00033-019-1112-4

CHEN W HPALMIERI A.

A blow-up result for the semilinear Moore-Gibson-Thompson equation with nonlinearity of derivative type in the conservative case

[J].Evolution Equations & Control Theory,2021104):673-687. DOI:10.3934/eect.2020085

[本文引用: 1]

BREZIS H.Functional Analysis,Sobolev Spaces and Partial Differential Equations[M].New YorkSpringer2011280-284. doi:10.1007/978-0-387-70914-7

[本文引用: 1]

/