浙江大学学报(理学版), 2022, 49(1): 105-111 doi: 10.3785/j.issn.1008-9497.2022.01.014

环境科学

同步脱氮除硫燃料电池的电化学特性研究

蔡靖,,, 刘思懿, 吴媛媛, 郑紫凌, 王如意, 李强标

浙江工商大学 环境科学与工程学院,浙江 杭州

Electrochemical characteristics of microbial fuel cells treating nitrate and sulfide simultaneously

CAI Jing,,, LIU Siyi, WU Yuanyuan, ZHENG Ziling, WANG Ruyi, LI Qiangbiao

College of Environmental Science and Engineering,Zhejiang Gongshang University,Hangzhou 310012,China

收稿日期: 2020-09-19  

基金资助: 国家自然科学基金青年科学基金项目.  51808494
浙江省自然科学基金资助项目.  LY18E080007
浙江省公益技术研究计划项目.  LGF19E080003

Received: 2020-09-19  

作者简介 About authors

蔡靖(1984—),ORCID:https://orcid.org/0000-0001-7132-377X,女,博士,副教授,主要从事废水生物处理及资源化研究,E-mail:caijing@zjgsu.edu.cn. , E-mail:caijing@zjgsu.edu.cn

摘要

同步脱氮除硫工艺以硝态氮作为电子受体,硫化物作为电子供体,通过以废治废,去除氮硫污染物。本文构建了双室型微生物燃料电池(microbial fuel cell,MFC),将同步脱氮除硫工艺与MFC相结合,在处理废水的同时生产电能。与化学对照组相比,该同步脱氮除硫MFC具有高基质去除性能和产电性能。当进水硝态氮和硫化物的浓度分别为95.54和540 mg·L-1,反应时间为20 h时,硝态氮和硫化物的去除率分别高达96.50%和99.64%;最大电流密度达457.20 mA·m-2,稳定电流密度为30.33 mA·m-2。通过循环伏安法、极化曲线法和电化学阻抗分析,探究了同步脱氮除硫MFC的电化学特性。结果表明,在同步脱氮除硫MFC电极上,同步发生了脱氮除硫反应,该MFC最大功率密度为75.70 mW·m-3,内阻约为2 474 Ω,其对同步脱氮除硫MFC电化学性能具有制约作用。

关键词: 同步脱氮除硫 ; 微生物燃料电池 ; 电化学特性 ; 循环伏安法 ; 电化学阻抗谱

Abstract

In the process of simultaneous nitrate and sulfide removal, nitrate is used as electron acceptor along with sulfide as electron donor, which can realize controlling waste by waste, and remove pollutants containing nitrogen and sulfur at the same time. This paper presents an approach to construct dual-chamber microbial fuel cell (MFC), combining the process of simultaneous nitrate and sulfide removal, hance attaining wastewater treatment and power generation concurrently. Compared with the chemical control experiment, the MFC treating sulfide and nitrate simultaneously displays good performance of substrate removal and electricity production. When the influent concentration of nitrate and sulfide are 95.54 and 540 mg·L-1, the removal percentages of nitrate and sulfide reach 96.50% and 99.64%, respectively, with the reaction time of 20 h. The maximum current density is as high as 457.20 mA·m-2, while the stable current density is 30.33 mA-1·m-2. The electrochemical characteristics of the MFC are also evaluated by polarization curve, cyclic voltammetry and electrochemical impedance analysis. The results show that there is a simultaneous sulfide and nitrate removal reaction occurred on the electrode of the MFC. The maximum power density of the MFC is up to 75.70 mW·m-3, and its internal resistance is about 2 474 Ω, the diffusion internal resistance is the electrochemical performance-limiting factor of the MFC.

Keywords: simultaneous sulfide and nitrate removal ; microbial fuel cell ; electrochemical characteristics ; cyclic voltammetry ; electrochemical impedance spectroscopy

PDF (1313KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

蔡靖, 刘思懿, 吴媛媛, 郑紫凌, 王如意, 李强标. 同步脱氮除硫燃料电池的电化学特性研究. 浙江大学学报(理学版)[J], 2022, 49(1): 105-111 doi:10.3785/j.issn.1008-9497.2022.01.014

CAI Jing, LIU Siyi, WU Yuanyuan, ZHENG Ziling, WANG Ruyi, LI Qiangbiao. Electrochemical characteristics of microbial fuel cells treating nitrate and sulfide simultaneously. Journal of Zhejiang University(Science Edition)[J], 2022, 49(1): 105-111 doi:10.3785/j.issn.1008-9497.2022.01.014

0 引 言

含氮污水对生态环境危害严重,需对其进行处理1。在污水的生物脱氮处理过程中,普遍面临反硝化碳源不足的难题2。与此同时,我国的支柱工业,如发酵、化工、制药、造纸等,在获得经济效益的同时,产生了大量的含硫废水3。在厌氧处理含硫废水过程中,硫酸盐被还原,产生的硫化物具有强烈的腐蚀作用,严重时可致人昏迷和死亡4。研究证明,一些微生物能以硫化物为电子供体将硝酸盐还原为氮气5。以此为依据,研发出同步厌氧生物脱氮除硫工艺(简称“同步脱氮除硫工艺”),即在缺氧状态下,将厌氧过程的副产物——硫化物作为电子供体,用以还原硝态氮,实现以废治废,同时去除氮和硫2种污染物6。不少研究者对同步脱氧除硫工艺进行了深入研究,在性能及调控操作等方面取得了可喜进展,且国内外已有深度处理城市污水以及含氨含硫工业废水的工程案例和应用7。微生物燃料电池(microbial fuel cell,MFC)是一种全新的废水处理方法,既能处理废水中的污染物,又能产生电能8。据此,笔者将同步脱氮除硫工艺与MFC相结合,开发了同步脱氮除硫MFC,证实该MFC可同步进行废水处理和生物发电,且产电功能与基质去除功能之间是相互耦联的9-10

然而,硫化物化学性质活泼,易发生电化学氧化11。同步脱氮除硫工艺属于氧化还原过程,在MFC的阳极上通常发生氧化反应,微生物在基质去除过程中是否起主导作用?已有研究涉及同步脱氮除硫MFC电化学性质的较少。基于此,本文通过构建双室型同步脱氮除硫MFC,分别考查同步脱氮除硫MFC及其化学对照组的产电性能和基质去除性能,探究微生物的作用,并通过测绘同步脱氮除硫MFC的循环伏安曲线、极化曲线及电化学阻抗Nyquist曲线,进一步探讨同步脱氮除硫MFC的电化学特性。

1 材料与方法

1.1 试验装置及运行方式

构建双室型MFC,阳极室和阴极室的有效体积均为300 mL,两室之间用质子交换膜(Ultrax CMI-7 000 Membrane International,USA)分隔9。以石墨棒(6 cm×Φ1 cm)作为阳极和阴极,外接负载为1 000 Ω。阳极液为模拟废水,且通过回流泵回流,加强进水与污泥的混合6,阴极液为高锰酸钾溶液(浓度为100 mg·L-1,pH=7.0)。

采用间歇进水方式运行同步脱氮除硫MFC,反应周期为20 h,每天更换基质。试验废水为模拟废水9。进水硫化物中硫的浓度和硝酸盐中氮的浓度分别约为540和94.50 mg·L-1(物质的量之比为5∶2,理论产物为单质硫和氮气)。采用2个相同构型的MFC,分别记为MFC1和MFC2。其中,MFC1为对照组,阳极室不接种富集污泥,设3组平行,进水20 h后测定出水基质浓度,取其平均值进行分析;MFC2为实验组,阳极室内接种100 mL富集后具有同步脱氮除硫功能的污泥,其中污泥悬浮固体(SS)浓度为95.03 g·L-1,挥发性悬浮固体(VSS)浓度为68.68 g·L-1。待出水基质浓度稳定后(3~5个反应周期),取出水基质浓度平均值进行分析。

试验过程中,进水pH为7.0±0.1,环境温度为25°C±2°C。

1.2 分析方法

硝氮(NO3--N)用紫外分光光度法测定;亚硝氮(NO2--N)用N-(1-萘基)-乙二胺光度法测定;氨氮(NH4+-N)用水杨酸-次氯酸盐光度法测定;硫化物(S2--S)用亚甲基蓝分光光度法测定;硫酸盐(SO42--S)用铬酸钡分光光度法测定12;单质硫和氮气的产量分别根据进出水元素质量守恒进行计算。

MFC输出电压数据由数据采集系统(Agilent 34970A Data Acquisition/Switch Unit)收集,收集频率为10 min。电流密度根据电流和电极净表面积进行计算。待MFC2稳定运行1个月后,测定其电化学特性。通过电化学工作站(660C,CH Instruments Inc.,USA)测定循环伏安曲线。其中,以MFC的阳极作为工作电极,铂丝电极作为对电极,Ag/AgCl电极作为参比电极。电位扫描范围为-1.6~+1.6 V,扫速为10 mV·s-1。每组试验重复3次。采用稳态放电法绘制极化曲线,保持MFC处于开路状态,待稳定后,逐步改变外电路电阻(100~90 000 Ω),记录MFC在每个外电阻的准稳电压,分别计算电流密度和功率密度,并绘制相应的极化曲线。MFC保持开路状态,待稳定后,采用三电极体系,用恒电位仪测试交流阻抗,以阳极作为工作电极,铂丝电极作为对电极,Ag/AgCl电极作为参比电极,正弦扰动电压为10 mV,频率为10-3~105 Hz。用软件ZsimpWin拟合电化学阻抗谱等效电路。

2 结果与讨论

2.1 基质去除情况

MFC1和MFC2的进水硫化物浓度均为540 mg·L-1,反应20 h后,MFC1出水硝态氮浓度略有提高,与进水相比,出水硝态氮浓度提高了(6.69±1.58)%;出水亚硝态氮浓度略有增高,增高率为0.04%;MFC1的硫化物去除率为(77.30±0.35)%,其中(64.92±3.06)%的硫化物被氧化为单质硫,(12.38±0.53)%的硫化物进一步被氧化为硫酸盐。

MFC2的氮素基质去除情况与MFC1不同,而其硫素基质去除情况与MFC1较为相似,但去除率更高。MFC2的出水硝态氮浓度仅为进水硝态氮浓度的(3.50±0.47)%,去除率高达96.50%,且出水亚硝态氮浓度仅占进水硝酸盐浓度的(0.19±0.02)%,即(96.32±0.89)%的硝态氮被还原为氮气;MFC2的出水硫化物浓度仅为进水硫化物浓度的(0.36±0.05)%,去除率高达99.64%,其中,(28.50±1.70)%的硫化物被氧化为单质硫,(71.14±1.57)%的硫化物进一步被氧化为硫酸盐。

实验结果表明,MFC1的硝态氮不但没有被去除,反而有所增加,且氨氮减少,推测可能是因为氨氮发生电化学氧化,产生硝态氮和亚硝态氮13;硫化物的氧化产物为单质硫和硫酸盐,且产物以单质硫为主,这与文献报道14一致。MFC2的硝态氮和硫化物的去除速率分别可达4.61和26.90 mg·(L·h)-1,出水硝态氮和硫化物浓度分别为3.34和1.95 mg·L-1。其中硝态氮的还原产物为亚硝态氮和氮气,且以氮气为主;硫化物的氧化产物为单质硫和硫酸盐,且以硫酸盐为主。这表明,在同步脱氮除硫MFC中,微生物不仅将硝态氮还原为氮气,还将单质硫进一步氧化为硫酸盐。魏炎等15以硫化物作为阳极电子供体,硝酸盐作为阴极电子受体,采用双室型MFC处理含硫化物和硝酸盐的废水。当进水硫化物浓度为(118.9±14.7) mg·L-1时,出水硫化物被消耗殆尽,硫酸盐浓度逐渐升至88.4 mg·L-1,约占进水硫化物浓度的74.35%;阴极中出水硝酸盐浓度则低于0.01 mg·L-1,与本文结果类似。

图1

图1   同步脱氮除硫MFCs的基质去除情况

数值表示出水硫素(或氮素)占进水硫化物(或硝酸盐)的百分比。

Fig.1   Performance of substrate removal in MFCs treating sulfide and nitrate simultaneously

Values describe a effluent sulfur/nitrogen percentage in terms of total influent sulfide/nitrate concentration.


2.2 产电性能

图2为同步脱氮除硫MFC的产电情况。MFC1的电流密度在进水初期最大,为184.74 mA·m-2;0.5 h后,迅速降至39.92 mA·m-2,降幅达78.39%;随后,下降趋缓,最终降至15.76 mA·m-2。MFC2的电流密度在进水初期最大,为457.20 mA·m-2;0.3 h后,迅速降至376.69 mA·m-2,降幅为17.61%;随后2 h内,电流密度维持在376.69~338.44 mA·m-2;后出现断崖式下降,在第5 h时,降为68.40 mA·m-2;最终缓慢降至30.33 mA·m-2。可见,MFC2与MFC1的产电趋势存在明显差异。LEE等16构建了可处理含有机物、硫化物和硝态氮废水的双室型MFC,其稳定电压为25~30 mV,平均电流密度高达14.8 mA·m-2,这与其阳、阴极材料(碳毡)具有较大比表面积有关。

图2

图2   同步脱氮除硫MFCs的产电情况

Fig.2   Performance of electricity generation in MFCs treating sulfide and nitrate simultaneously


在MFC1的产电过程中,因电极极化,电流密度迅速下降;而在MFC2的产电过程中,电流密度稳定,处于“平台期”。这表明,在同步脱氮除硫MFC中,微生物的存在有利于产电,这与文献报道结果一致。SUN等17发现,在以硫化物为单一基质的MFC中加入微生物,其产电性能更优。而在同步脱氮除硫MFC中,硫化物被氧化所提供的电子数(31.7 mmol)大于硝态氮被还原所接受的电子数(9.87 mmol),多余电子则由阳极传递至阴极,产生电流,这与文献报道9一致。

2.3 循环伏安曲线

循环伏安法有多种用途,如用于确定氧化还原活性物质的氧化还原电位、考查微生物菌株或种群的电化学活性18以及测定电极表面的氧化还原反应19等。在MFC2稳定运行1个月后,其循环伏安曲线如图3所示。该循环伏安曲线有2个氧化还原峰,分别在-0.03 V和-1.24 V处,电流峰值分别为20 mA和52 mA。YIN等20采用循环伏安法研究了电化学法还原硝酸盐机理,发现硝酸盐还原峰的电压出现在-1.0~-1.3 V;龚园园21采用循环伏安法研究了硫化物在电极上的形态变化,发现硫化物氧化峰的电压出现在0~0.1 V。因此,推测这2个氧化还原峰分别为硝酸盐还原峰和硫化物氧化峰,从而证实了MFC2电极上发生了同步脱氮除硫反应。

图3

图3   同步脱氮除硫MFC2的循环伏安曲线

Fig.3   Cyclic voltammetry scans of MFC2 treating sulfide and nitrate simultaneously


2.4 极化曲线

极化曲线通常可分为活化极化区、欧姆极化区和浓差极化区。在大多数MFC中,活化极化区和欧姆极化区较常见,浓差极化区较少见22。同步脱氮除硫MFC2也不例外,极化曲线分为活化极化区(I)和欧姆极化区(II),如图4所示。在活化极化区,电流密度较小,电压损失主要来自于活化极化,对应于微生物电极反应的活化过程;随着电流密度的增大,极化曲线进入欧姆极化区,电压损失主要来自于欧姆极化,此时,电压与电流密度呈线性关系,所得拟合直线的斜率可代表电池的表观内阻23。根据实验结果,表观内阻为1 923 Ω(R2=0.997 9)。

图4

图4   同步脱氮除硫MFC2的极化曲线

Fig.4   Polarization curve of MFC2 treating sulfide and nitrate simultaneously


随着电流密度的增大,同步脱氮除硫MFC2的功率密度随之增大。当电流密度为172 mA·m-2(外接负载为2 000 Ω)时,其功率密度达到最大值,为75.70 mW·m-3。随后,功率密度随着电流密度的增大而减小。通常认为,当内阻与外阻一致时,功率密度达到最大值,因此判断同步脱氮除硫MFC2的内阻为2 000 Ω,该结果与极化曲线法的结果一致。

2.5 电化学阻抗分析

同步脱氮除硫MFC2的电化学阻抗(EIS)分析结果如图5所示。MFC的典型Nyquist曲线包括中高频区的半圆形部分和低频区的线形部分,可直观体现电池中的不同极化过程,用于分析内阻及其组成24。中高频区的半圆形与横轴相交,交点值表示欧姆内阻,中高频区的半圆直径表示极化内阻,低频区的半圆直径表示有限扩散步骤控制的阻抗25

图5

图5   同步脱氮除硫MFC2的Nyquist曲线

Fig.5   Nyquist curve of MFC2 treating sulfide and nitrate simultaneously


EIS分析结果用ZSimpWin软件进行拟合,等效电路示意如图6所示。其中,Rohm为欧姆电阻,Rct为电荷转移内阻,Rd为扩散内阻,||为常相位角元件。欧姆内阻主要由电池构型、电极材料电阻、质子交换膜电阻及溶液内阻产生;电荷转移内阻主要由电极反应产生,包括电极上发生的氧化还原反应以及电子传递过程的活化损失;扩散内阻则是由物质向电极表面迁移引起的传质损失26。EIS拟合结果显示,Rohm=20.84 Ω,Rct=44.78 Ω,Rd=2 407 Ω,拟合优度卡方参数(χ2)为1.37×10-3。表明在同步脱氮除硫MFC2中,低频区的扩散内阻(Rd)在总内阻中所占比例最大(97.36%),说明扩散内阻限制同步脱氮除硫MFC2的电化学性能。另外,由于硫化物在氧化过程中产生的单质硫沉积在电极上,故硫化物向电极表面扩散的速度降低27

图6

图6   等效电路示意

Fig. 6   Equivalent circuit diagram


3 结 论

构建了具有良好同步脱氮除硫性能的双室型微生物燃料电池(MFC2)。当进水硫化物浓度为540 mg·L-1时,反应20 h后,MFC2的硝态氮和硫化物去除率分别高达96.50%和99.64%,且其最大电流密度可达457.20 mA·m-2,稳定电流密度为30.33 mA·m-2。由循环伏安曲线知,同步脱氮除硫MFC2电极上发生了同步脱氮除硫反应。分析极化曲线和电化学阻抗知,MFC2的最大功率密度为75.70 mW·m-3,内阻约为2 473 Ω,其中扩散内阻是限制同步脱氮除硫MFC电化学性能的因素。

http://dx.doi.org/10.3785/j.issn.1008-9497.2022.01.001

参考文献

袁建华赵天涛彭绪亚.

极端条件下异养硝化-好氧反硝化菌脱氮的研究进展

[J]. 生物工程学报, 2019356): 942-955. DOI:10.13345/j.cjb.180427

[本文引用: 1]

YUAN J HZHAO T TPENG X Yet al.

Advances in heterotrophic nitrification-aerobic denitrifying bacteria for nitrogen removal under extreme conditions

[J]. Chinese Journal of Biotechnology, 2019356): 942-955. DOI:10.13345/j.cjb.180427

[本文引用: 1]

周成金.

生物倍增工艺处理低碳氮比城市污水脱氮效能的研究

[D]. 哈尔滨哈尔滨工业大学2015.

[本文引用: 1]

ZHOU C J.

Nitrogen Removal Efficiency of Bio-doubling Process for Treating Municipal Wastewater with Low Carbon to Nitrogen Ratio

[D]. HarbinHarbin Institute of Technology2015.

[本文引用: 1]

DENG D YLIN L S.

Continuous sulfidogenic wastewater treatment with iron sulfide sludge oxidation and recycle

[J]. Water Research, 2017114210-217. DOI:10.1016/j.watres.2017.02.048

[本文引用: 1]

JIN R CYANG G FZHANG Q Qet al.

The effect of sulfide inhibition on the ANAMMOX process

[J]. Water Research, 2013473): 1459-1469. DOI:10.1016/j.watres.2012.12.018

[本文引用: 1]

SHOW K YLEE D JPAN X L.

Simultaneous biological removal of nitrogen-sulfur-carbon: Recent advances and challenges

[J]. Biotechnology Advances, 2013314):409-420. DOI:10.1016/j.biotechadv.2012.12.006

[本文引用: 1]

蔡靖.

同步厌氧脱氮除硫工艺及微生物学特性的研究

[D]. 杭州浙江大学2010.

[本文引用: 2]

CAI J.

Process Performance and Microbial Property of Simultaneous Anaerobic Sulfide and Nitrate Removal

[D]. HangzhouZhejiang University2010.

[本文引用: 2]

LIN SMACKEY H RHAO T Wet al.

Biological sulfur oxidation in wastewater treatment: A review of emerging opportunities

[J]. Water Research, 2018143): 399-415. DOI:10.1016/j.watres.2018.06.051.

[本文引用: 1]

洛根. 微生物燃料电池[M].冯玉杰,王鑫,等译.北京化学工业出版社2009. doi:10.21236/ada574405

[本文引用: 1]

LOGAN B E. Microbial Fuel Cells[M]. Translated by FENG Y J,WANG X,et al. BeijingChemical Industry Press2009. doi:10.21236/ada574405

[本文引用: 1]

CAI JZHENG P.

Simultaneous anaerobic sulfide and nitrate removal in microbial fuel cell

[J]. Bioresource Technology, 2013128760-764. DOI:10.1016/j.biorech.2012.08.046.

[本文引用: 4]

CAI JZHENG PZHANG J Qet al.

Simultaneous anaerobic sulfide and nitrate removal coupled with electricity generation in microbial fuel cell

[J]. Bioresource Technology, 2013129224-228. DOI:10.1016/j.biortech.2012.11.008

[本文引用: 1]

CAI JZHENG PQAISAR Met al.

Elemental sulfur recovery of biological sulfide removal process from wastewater: A review

[J]. Critical Reviews in Environmental Science and Technology, 20174721): 2079-2099. DOI:10.1080/10643389.2017. 1394154

[本文引用: 1]

国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京中国环境科学出版社2002. doi:10.1061/9780784406250.in

[本文引用: 1]

State Environmental Protection Administration of China. Method of Water and Wastewater [M]. 4th ed. BeijingChina Environmental Science Press2002. doi:10.1061/9780784406250.in

[本文引用: 1]

LI FPENG XLIU Y Bet al.

A chloride-radical-mediated electrochemical filtration system for rapid and effective transformation of ammonia to nitrogen

[J]. Chemosphere, 2019229383-391. DOI:10.1016/j.chemosphere.2019.04.180

[本文引用: 1]

PIKAAR IROZENDAL R AYUAN Z Get al.

Electrochemical sulfide oxidation from domestic wastewater using mixed metal-coated titanium electrodes

[J]. Water Research, 20114517): 5381-5388. DOI:10.1016/j.watres.2011.07.033

[本文引用: 1]

魏炎张少辉赵丽

反硝化脱硫微生物燃料电池的可行性研究

[J].环境科学学报,2016368): 2832-2837. DOI:10.13671/j.hjkxxb.2016.0063

[本文引用: 1]

WEI YZHANG S HZHAO Let al.

Feasibility of denitrifying and sulfide-removal microbial fuel cell

[J]. Acta Scientiae Circumstantiae, 2016368): 2832-2837. DOI:10.13671/j.hjkxxb.2016.0063

[本文引用: 1]

LEE C YHO K LLEE D Jet al.

Electricity harvest from nitrate/sulfide-containing wastewaters using microbial fuel cell with autotrophic denitrifier, Pseudomonas sp. C27

[J]. International Journal of Hydrogen Energy, 20123720): 15827-15832. DOI:10.1016/j.ijhydene.2012.01.092

[本文引用: 1]

SUN MMU Z XCHEN Y Pet al.

Microbe-assisted sulfide oxidation in the anode of a microbial fuel cell

[J]. Environmental Science & Technology, 2009439): 3372-3377. DOI:10.1021/es802809m

[本文引用: 1]

ZHANG B GZHAO H ZSHI C Het al.

Simultaneous removal of sulfide and organics with vanadium(V) reduction in microbial fuel cells

[J]. Journal of Chemical Technology & Biotechnology, 20098412): 1780-1786. DOI:10.1002/jctb.2244

[本文引用: 1]

RABAEY KBOON NSICILIANO S Det al.

Biofuel cells select for microbial consortia that self-mediate electron transfer

[J]. Applied and Environmental Microbiology, 2004709): 5373-5382. DOI:10.1128/aem.70.9.5373-5382.2004

[本文引用: 1]

YIN DLIU Y YSONG P Fet al.

In situ growth of copper/reduced graphene oxide on graphite surfaces for the electrocatalytic reduction of nitrate

[J]. Electrochimica Acta, 2019324134846. DOI:10.1016/j.electacta.2019.134846

[本文引用: 1]

龚园园.

微生物电化学系统处理含硫有机废水及硫回收技术研究

[D]. 哈尔滨哈尔滨工业大学2012. doi:10.7666/d.D238839

[本文引用: 1]

GONG Y Y.

The Technology of Treatment of Sulfur-containing Organic Wastewater and Recovery of Sulfur Using Biochemical System

[D]. HarbinHarbin Institute of Technology2012. doi:10.7666/d.D238839

[本文引用: 1]

刘智敏.

微生物燃料电池电化学性能研究

[D]. 哈尔滨哈尔滨工程大学2008.

[本文引用: 1]

LIU Z M.

Study on Electrochemical Performance of Microbial Fuel Cell

[D]. HarbinHarbin Institute of Technology2008.

[本文引用: 1]

梁鹏范明志曹效鑫.

微生物燃料电池表观内阻的构成和测量

[J]. 环境科学, 2007288): 1894-1898. DOI:10.3321/j.issn:0250-3301.2007. 08.043

[本文引用: 1]

LIANG PFAN M ZCAO X Xet al.

Composition and measurement of the apparent internal resistance in microbial fuel cell

[J]. Environmental Science, 2007288): 1894-1898. DOI:10.3321/j.issn:0250-3301. 2007.08.043

[本文引用: 1]

周昱宏.

微生物燃料电池处理含氮废水的研究

[D]. 杭州浙江大学2018. doi:10.29252/jafm.12.03.29207

[本文引用: 1]

ZHOU Y H.

Study on the Nitrogen-containing Wastewater Treatment by Microbial Fuel Cell

[D]. HangzhouZhejiang University2018. doi:10.29252/jafm.12.03.29207

[本文引用: 1]

张建民魏佳齐崔心水.

双阴极MFC启动过程中的电化学特性

[J]. 环境工程学报, 20171112): 6252-6258. DOI:10.12030/j.cjee.201705059

[本文引用: 1]

ZHANG J MWEI J QCUI X Set al.

Electrochemical characterization of dual cathode MFC during start-up phase

[J]. Chinese Journal of Environmental Engineering, 20171112): 6252-6258. DOI:10.12030/j.cjee.201705059

[本文引用: 1]

殷瑶黄光团陈建文.

微生物燃料电池启动过程的电化学行为

[J]. 华东理工大学学报(自然科学版), 2014402): 190-195. DOI:10.3969/j.issn. 1006-3080.2014.02.010

[本文引用: 1]

YIN YHUANG G TCHEN J Wet al.

Electrochemical behavior of microbial fuel cell in a start-up phase

[J]. Journal of East China University of Science and Technology(Natural Science Edition), 2014402): 190-195. DOI:10.3969/j.issn.1006-3080. 2014.02.010

[本文引用: 1]

VAIOPOULOU EPROVIJN TPRÉVOTEAU Aet al.

Electrochemical sulfide removal and caustic recovery from spent caustic streams

[J]. Water Research, 20169238-43. DOI:10.1016/j.watres. 2016.01.039

[本文引用: 1]

/