Please wait a minute...
浙江大学学报(理学版)  2021, Vol. 48 Issue (6): 700-710    DOI: 10.3785/j.issn.1008-9497.2021.06.008
化学     
水液相环境下α-丙氨酸Mn(Ⅱ)配合物旋光异构的理论研究
刘军1, 姜春旭2, 刘芳2, 高峰2, 张雪娇2, 雷泽萍2, 佟华2, 王佐成2
1.白城师范学院 计算机科学学院,吉林 白城 137000
2.白城师范学院 理论计算中心,吉林 白城 137000
Theoretical study on the optical isomerization of α-alanine Mn (Ⅱ) complex in water-liquid phase environment
LIU Jun1, JIANG Chunxu2, LIU Fang2, GAO Feng2, ZHANG Xuejiao2, LEI Zeping2, TONG Hua2, WANG Zuocheng2
1.College of Computer Science, Baicheng Normal University, Baicheng 137000, Jilin Province, China
2.Theoretical Calculation Center, Baicheng Normal University, Baicheng 137000, Jilin Province, China
 全文: PDF(3742 KB)   HTML  
摘要: 采用密度泛函理论的明尼苏达泛函2006(M06)和明尼苏达泛函2015(MN15)方法,结合自洽场理论的溶质全电子密度溶剂化(solvation model based on desity,SMD)模型,研究了水液相下两性α-丙氨酸二价锰配合物(Mn(Ⅱ))的旋光异构。研究结果表明,S-Ala·Mn2+S-Mn(Ⅱ))可在a、b、c和d 4个通道旋光异构,a通道H以O为桥迁移,b通道H以O和N顺次为桥迁移,c通道H以N为桥迁移,d通道H以Mn(Ⅱ)为桥迁移。势能面计算结果表明,c通道最具优势,决速步能垒为220.8 kJ·mol-1;a和b通道同为亚优势通道,决速步能垒为254.8 kJ·mol-1;d通道为劣势通道,决速步能垒为293.3 kJ·mol-1。在水分子(簇)作用下,c通道决速步能垒降至155.1 kJ·mol-1;a和b通道决速步能垒降至165.8 kJ·mol-1;d通道仍为劣势通道,且S-A·Mn无法在该通道旋光异构。水液相下S-A·Mn很难消旋,Mn(Ⅱ)用于生命体补充二价锰和α-丙氨酸具有较好的安全性。
关键词: 丙氨酸二价锰密度泛函理论溶剂效应旋光异构过渡态能垒    
Abstract: The optical isomerism of amphoteric α-alanine Mn(Ⅱ) (A·Mn) complex was studied in water-liquid phase environment by means of M06 and MN15 methods based on density functional theory and SMD model of self consistent reaction field theory. The study reveals that S-Mn(Ⅱ) can be optically isomerized in channels a, b, c and d. The proton was transferred with carbonyl oxygen as the bridge in channel a, and that was transferred with carbonyl oxygen and amino nitrogen in turn as the bridge in channel b, and that that was transferred with amino nitrogen as the bridge in channel c, while hydride ion was transferred with Mn as the bridge in channel d. The potential energy surface shows that channel c has the most advantage and the energy barrier of the rate-determining step is 220.8 kJ·mol-1, channel a and b are both sub-dominant channels and the energy barrier of the rate-determining step are 254.8 kJ·mol-1, d is the inferior channel and the energy barrier is 293.3 kJ·mol-1. Furthermore, under the action of water molecule (cluster), the energy barrier of the rate-determining step is reduced to 155.1 kJ·mol-1 in channel c,and reduced to 160.3 kJ·mol-1 in channel a and b, while channel d is still the inferior channel in which the optical isomerization of S-A·Mn cannot take place. The results show that S-A·Mn is difficult to be racemized in water-liquid phase, and A·Mn is safe to supplement bivalent manganese and α- alanine in life.
Key words: alanine    divalent manganese    density functional theory    solvent effect    optical isomerization    transition state    energy barrier
收稿日期: 2020-06-15 出版日期: 2021-11-25
CLC:  O 641.12  
基金资助: 吉林省教育厅科学研究规划项目(JJKH20210010KJ);全国大学生创新项目(202110206019);吉林省科技厅自然科学基金项目(20160101308JC).
通讯作者: ORCID: https://orcid.org/0000-0002-7897-4644, E-mail: 115721119@qq.com     E-mail: 115721119@qq.com
作者简介: 刘军(1979—),ORCID: https://orcid.org/0000-0002-5611-7123,男,硕士,讲师,主要从事计算机应用化学研究,E-mail: 2173397@qq.co;
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘军
姜春旭
刘芳
高峰
张雪娇
雷泽萍
佟华
王佐成

引用本文:

刘军, 姜春旭, 刘芳, 高峰, 张雪娇, 雷泽萍, 佟华, 王佐成. 水液相环境下α-丙氨酸Mn(Ⅱ)配合物旋光异构的理论研究[J]. 浙江大学学报(理学版), 2021, 48(6): 700-710.

LIU Jun, JIANG Chunxu, LIU Fang, GAO Feng, ZHANG Xuejiao, LEI Zeping, TONG Hua, WANG Zuocheng. Theoretical study on the optical isomerization of α-alanine Mn (Ⅱ) complex in water-liquid phase environment. Journal of Zhejiang University (Science Edition), 2021, 48(6): 700-710.

链接本文:

https://www.zjujournals.com/sci/CN/10.3785/j.issn.1008-9497.2021.06.008        https://www.zjujournals.com/sci/CN/Y2021/V48/I6/700

1 FISHER G H, D'ANIELLO A, VETREE A, et al. Free D-aspartate and D-alanine in normal and alzheimer brain[J]. Brain Research Bulletin, 1991, 26(6): 983-985. DOI: 10.1016/0361-9230(91)90266-M
2 THOMPSON R J, BOUWER H G, PORTNOY D A, et al. Pathogenicity and immunogenicity of a listeria monocytogenes strain that requires D-alanine for growth[J]. Infection and Immunity, 1998, 66(8): 3552-3561. DOI: 10.1111/j.1574-695X.1998
3 ALVAREZ L, ESPAILLAT A, HERMOSO J A, et al. Peptidoglycan remodeling by the coordinated action of multispecific enzymes[J]. Microbial Drug Resistance, 2014, 20(3): 190-198. DOI: 10.1089/mdr.2014.0047
4 ATWOOD C S, HUANG X, MOIR R D, et al. Role of free radicals and metal ions in the pathogenesis of Alzheimer's disease[J]. Metal Ions in Biological Systems, 1999, 36: 309-364. DOI: 10.1074/jbc.M110. 169 714
5 杜俊, 张俊豪, 方宾. 氨基酸配合物的性质及应用[J]. 化学进展, 2003, 15(4): 288-294. DOI: 10.3321/j.issn:1005-281X.2003.04.005 DU J, ZHANG J H, FANG B. Properties and applications of amino-acid complex[J]. Progress in Chemistry, 2003,15(4): 288-294. DOI: 10.3321/j.issn:1005-281X.2003.04.005
6 樊耀亭, 朱伯仲, 李娅, 等. 含稀土的混合氨基酸配合态多元微肥的研制及应用[J]. 稀土, 1997(4): 59-61. DOI: 10.16533/j.cnki.15-1099/tf.1997.04.015 FAN Y T, ZHU B Z, LI Y, et al. Preparation and application of mixed amino acid fertilizer containing care earth [J]. Chinese Rare Earths, 1997(4): 59-61. DOI: 10.16533/j.cnki.15-1099/tf.1997.04.015
7 王佐成, 刘凤阁, 吕洋, 等. 孤立条件下α-丙氨酸分子手性转变机制的密度泛函理论[J]. 吉林大学学报(理学版), 2014, 52(4): 825-830. DOI: 10.13413/j.cnki.jdxblxb.2014.04.38 WANG Z C, LIU F G, LYU Y, et al. Chiral transformaition mechanism of α-alanine under isolated condition by density functional theory[J]. Journal of Jilin University (Science Edition), 2014, 52(4): 825-830. DOI: 10.13413/j.cnki.jdxblxb.2014.04.38
8 王佐成, 高峰, 赵衍辉, 等. α-丙氨酸分子手性转变反应通道及水分子作用的理论研究[J]. 浙江大学学报(理学版), 2015, 42 (2): 189-197. DOI: 10.3785/j.issn.1008-9497.2015.02.013 WANG Z C, GAO F, ZHAO Y H, et al. Theoretical research on the chiral transformation pathway of α-alanine and effect of water molecules[J]. Journal of Zhejiang University(Science Edition), 2015, 42(2): 189-197. DOI: 10.3785/j.issn.1008-9497.2015.02.013
9 李忠, 佟华, 杨晓翠, 等. 基于氨基作H转移桥梁单体α-Ala的手性转变机理[J]. 复旦学报(自然科学版), 2015, 54(5): 642-647,653. DOI: 10.15943/j.cnki.fdxb-jns.2015.05.014. LI Z, TONG H, YANG X C, et al. The Chiral transition mechanism of monomer α-alanine based on amino as H transfer bridge[J]. Journal of Fudan University (Natural Science), 2015, 54(5): 642-647,653. DOI: 10.15943/j.cnki.fdxb-jns.2015.05.014
10 田子德, 高峰, 杨晓翠, 等. 具有氨基和羧基间单氢键的α-Ala分子旋光异构机理及水和羟自由基的作用[J]. 复旦学报(自然科学版), 2018, 57(4): 517-526, 534. DOI: 10.15943/j.cnki.fdxb-jns.2018.04.015 TIAN Z D, GAO F, YANG X C, et al. Mechanism of optical isomerism of α-Ala molecules with hydrogen bonds between amino and carboxyl groups and roles of water and hydroxyl radicals[J]. Journal of Fudan University (Natural Science), 2018, 57(4): 517-526, 534. DOI: 10.15943/j.cnki.fdxb-jns.2018.04.015
11 杨晓翠, 高峰, 佟华, 等. 水液相环境下α-丙氨酸分子的旋光异构及氢氧根和羟基自由基的作用[J]. 武汉大学学报(理学版), 2019, 65(1):19-29. DOI: 10.14188/j.1671-8836.2019.01.003 YANG X C, GAO F, TONG H, et al. Optical isomerization of α-alanine molecules and roles of hydroxyl ions and hydroxyl radicals in water liquid phase environment [J]. Journal of Wuhan University(Natural Science Edition) , 2019, 65(1):19-29. DOI: 10.14188/j.1671-8836.2019.01.003
12 徐锐英, 马宏源, 姜春旭, 等. 水液相环境下α-丙氨酸两性离子的手性对映体转变机理[J].中山大学学报(自然科学版), 2019,58(6):25-34. DOI: 10. 13471/j.cnki.acta.snus.2019.06.004 XU R Y, MA H Y, JIANG C X, et al.Mechanism of chiral enantiomer transition of α-alanine zwitterion in water/liquid phase environment[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2019,58(6):25-34. DOI: 10.13471/j.cnki.acta.snus. 2019.06.004
13 WANG Z C, LIU Y F, YAN H Y, et al.Theoretical investigations of the chiral transition of α-amino acid confined in various sized armchair Boron-Nitride nanotubes[J]. The Journal of Physical Chemistry A, 2017, 121(8): 1833-1840. DOI: 10. 1021/acs.jpca.7b00079
14 董丽荣, 高峰, 佟华, 等. 水环境下限域在MOR分子筛内的α-丙氨酸在羟自由基作用下的旋光异构及损伤[J]. 中山大学学报(自然科学版), 2019, 58(4):78-89. DOI: 10.13471/j.cnki.acta.snus. 2019. 04. 008 DONG L R, GAO F, TONG H, et al. Optical isomerism and damage of α-alanine confined in MOR zeolite induced by hydroxyl radicals in water environment[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2019, 58(4): 78-89. DOI: 10.13471/j.cnki.acta.snus.2019.04.008
15 李冰, 徐锐英, 姜春旭, 等. 气相环境下Cu2+催化α-丙氨酸手性对映体转变的机理[J]. 武汉大学学报(理学版), 2019, 65(6): 621-628. DOI: 10.14188/j.1671-8836.2019.06.013 LI B, XU R Y, JIANG C X, et al. Mechanism of chiral enantiomer transition of α-alanine catalyzed by Cu2+ in gas phase [J]. Journal of Wuhan University(Natural Science Edition), 2019, 65(6): 621-628. DOI: 10.14188/j.1671-8836.2019.06.013
16 徐锐英, 刘芳, 马宏源, 等. 气相环境下丙氨酸Ca2+配合物的手性转变机理及水分子的催化作用[J]. 浙江大学学报(理学版), 2020, 47(5): 630-641. DOI: 10.3785/j.issn.1008-9497.2020.05.015 XU R Y, LIU F, MA H Y, et al. Chiral transition mechanism of Ala and Ca2+ complexes in gas phase and catalysis of water molecules[J]. Journal of Zhejiang University (Science Edition), 2020, 47(5): 630-641. DOI: 10.3785/j.issn.1008-9497. 2020.05.015
17 李冰, 陈静思, 徐锐英, 等. 气相环境下Na+催化丙氨酸分子手性转变的机理[J]. 复旦学报(自然科学版), 2020, 59(4): 495-504. DOI: 10.15943/j.cnki.fdxb-jns.2020.04.015 LI B, CHEN J S, XU R Y, et al. Mechanism of chiral transition of alanine catalyzed by Na+ in gas phase[J]. Journal of Fudan University (Natural Science), 2020, 59(4): 495-504. DOI: 10.15943/j.cnki.fdxb-jns.2020.04.015
18 车立新, 张雪娇, 刘芳, 等. 气相α-丙氨酸二价锌配合物手性转变的密度泛函理论研究[J]. 云南大学学报(自然科学版), 2020, 42(5): 966-976. DOI:10. 7540/j.ynu.20200038 CHE L X, ZHANG X J, LIU F, et al. Chiral transition mechanism of Zn(Ⅱ) and α-Ala complexes in gas phase: A density functional theory study [J]. Journal of Yunnan University (Natural Sciences Edition), 2020, 42(5): 966-976. DOI: 10.7540/j.ynu.20200038
19 张雪娇, 李冰, 姜春旭, 等. 气相环境下丙氨酸Mn(Ⅱ)配合物的手性转变机理[J]. 武汉大学学报(理学版), 2020, 66(4):345-355. DOI: 10.14188/j.1671-8836.2020.0024 ZHANG X J, LI B, JIANG C X, et al. Chiral transition mechanism of Mn(Ⅱ) and Ala complexes in gas phase environment[J]. Journal of Wuhan University (Natural Science Edition), 2020, 66(4):345-355. DOI: 10.14188/j.1671-8836.2020.0024
20 张雪娇, 刘芳, 吴梓昊, 等. 丙氨酸Mg2+配合物的手性转变机理水分子(簇)的作用及水溶剂效应[J]. 中山大学学报(自然科学版),2020,59(5):156-168. DOI: 10.13471/j.cnki.acta.snus.2020.02.02.2020C003 ZHANG X J, LIU F, WU Z H, et al. Chiral transition mechanism of Mg2+and Ala complexes and effect of water molecules (clusters) and water solvents[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2020, 59(5): 156-168. DOI: 10.13471/j.cnki.acta.snus.2020.02.02.2020C003
21 刘芳, 马宏源, 潘宇, 等. 气相环境下K+催化丙氨酸分子手性对映体转变的机理[J]. 厦门大学学报(自然科学版), 2020, 59(6): 912-920. DOI: 10.6043/j.issn.0438-0479.201910017 LIU F, MA H Y, PAN Y, et al. Mechanism of alanine chiral enantiomer transition catalyzed by K+ in gas phase[J]. Journal of Xiamen University (Natural Science), 2020, 59(6): 912-920. DOI: 10.6043/j.issn.0438-0479. 201910017
22 姜春旭, 陈凤清, 张雪娇, 等. 基于密度泛函理论的气相下α-Ala·Fe2+配合物手性转变机理[J]. 复旦学报(自然科学版), 2020, 59(5): 627-638. DOI: 10. 15943/j.cnki.fdxb-jns.2020.05.014 JIANG C X, CHEN F Q, ZHANG X J, et al. Chiral transition mechanism of Fe2+ and α-Ala complexes in gas phase based on density functional theory[J]. Journal of Fudan University (Natural Science), 2020, 59(5): 627-638. DOI: 10.15943/j.cnki.fdxb-jns.2020.05.014
23 苏丹, 孙玉锋, 郝成欣, 等. 水液相环境下α-丙氨酸二价锌配合物的手性转变机理[J]. 中山大学学报(自然科学版), 2020, 59(6):. DOI: 10.13471/j.cnki.acta.snus.2020.04.29.2020C011 SU D, SUN Y F, HAO C X, et al. Chiral transition mechanism of α-alanine divalent zinc complex in water/liquid phase environment[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2020, 59(6):. DOI: 10.13471/j.cnki.acta.snus.2020.04.29.2020C0110
24 刘军, 姜春旭, 胡燠铭, 等. 水液相环境下两性α-丙氨酸Fe(Ⅱ)配合物的构型反转[J/OL]. 武汉大学学报(理学版), 2021, 67:1-11. [2021-04-13]. https://doi.org/10.14188/j.1671-8836.2020.0132. LIU J, JIANG C X, HU Y M, et al. Configuration inversion of amphoteric α-alanine Fe(Ⅱ) complex in water-liquid phase environment[J]. Journal of Wuhan University(Natural Science Edition), 2021, 67: 1-11. [2021-04-13]. https://doi.org/10.14188/j.1671-8836.2020.0132.
25 FINAZZI G, PETROUTSOS D, TOMIZIOLI M, et al. Ions channels/transporters and chloroplast regulation[J]. Cell Calcium, 2015, 58(1): 86-97. DOI: 10.1016/j.ceca.2014.10.002
26 WANG Y, VERMA P, JIN X S, et al. Revised M06 density functional for main-group and transition-metal chemistry[J]. Proceedings of the National Academy of Sciences of the United States of America(PNAS), 2018, 115(41): 10257-10262. DOI: 10.1073/pnas.181042 1115
27 MARENICH A V, CRAMER C J, TRUHLAR D G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions[J]. The Journal of Physical Chemistry B, 2009, 113(18): 6378-6396. DOI: 10.1021/ jp810292n
28 GARRETT B C, TRUHLAR D G. Criterion of minimum state density in the transition state theory of bimolecular reactions[J]. The Journal of Chemical Physics, 1979, 70(4): 1593-1598. DOI: 10.1063/1.437698
29 HRATCHIAN H P, SCHLEGEL H B J. Using hessian updating to increase the efficiency of a hessian based predictor-corrector reaction path following method[J]. Journal of Chemical Theory and Computation, 2005, 1(1): 61-69. DOI: 10.1021/ct0499783
30 YU H S, HE X, LI S L, et al. MN15: A Kohn-Sham global-hybrid exchange-correlation density functional with broad accuracy for multi-reference and single-reference systems and noncovalent interactions[J]. Chemical Science, 2016, 7: 5032-5051. DOI: 10.1039/C6SC00705H
31 FRISCH M J,TRUCKS G W,SCHLEGEL H B, et al. Gaussiall 16 Revision C.01[CP]. Pittsburgh USA:Gaussian,Inc,2019.
32 GORB L, LESZCZYNSKI J. Intramolecular proton transfer in mono- and dehydrated tautomers of guanine: An ab initio post-Hartree-Fock study[J]. Journal of the American Chemical Society, 1998, 120(20): 5024-5032.DOI: 10.1021/ja972017w
[1] 徐锐英, 刘芳, 马宏源, 张雪娇, 潘宇, 杨晓翠, 王佐成. 气相环境下丙氨酸Ca2+配合物的手性转变机理及水分子的催化作用[J]. 浙江大学学报(理学版), 2020, 47(5): 630-641.
[2] 潘宇, 庄严, 姜春旭, 刘薛涛, 陶思宇, 佟华, 王佐成. 水液相环境下羟自由基诱导的苯丙氨酸分子损伤机理[J]. 浙江大学学报(理学版), 2019, 46(6): 705-715.
[3] 闫红彦, 王佐成, 佟华, 杨晓翠. 水环境下羧基与氨基间为单氢键的α-Ala旋光异构及羟自由基和氢氧根的作用[J]. 浙江大学学报(理学版), 2019, 46(1): 48-57.
[4] 王佐成, 李晨洁, 董丽荣, 闫红彦, 佟华. 组氨酸分子几种稳定构型的手性转变机理及水溶剂化效应[J]. 浙江大学学报(理学版), 2018, 45(1): 103-111,117.
[5] 沈学优,童裳伦,陈立,王琴. 铽离子与3,4-二羟苯丙氨酸的荧光反应及其分析应用[J]. 浙江大学学报(理学版), 1999, 26(1): 54-58.