Please wait a minute...
浙江大学学报(理学版)  2019, Vol. 46 Issue (6): 705-715    DOI: 10.3785/j.issn.1008-9497.2019.06.013
物理学     
水液相环境下羟自由基诱导的苯丙氨酸分子损伤机理
潘宇1, 庄严2, 姜春旭3, 刘薛涛1, 陶思宇1, 佟华1, 王佐成1
1.白城师范学院 物理学院,吉林白城 137000
2.白城师范学院 计算机科学学院,吉林 白城137000
3.白城师范学院 传媒学院,吉林 白城 137000
Mechanism of phenylalanine damage induced by hydroxyl radicals in water-liquid phase environment
PAN Yu1, ZHUANG Yan2, JIANG Chunxu3, LIU Xuetao1, TAO Siyu1, TONG Hua1, WANG Zuocheng1
1.College of Physics, Baicheng Normal University, Baicheng 137000, Jilin Province, China
2.Computer Science College, Baicheng Normal University, Baicheng 137000, Jilin Province, China
3.Communication College, Baicheng Normal University, Baicheng 137000, Jilin Province, China
 全文: PDF(4235 KB)   HTML  
摘要: 在MP2/ SMD/6-311++g(3df, 2pd)//WB97X-D/SMD/6-311++G(d, p)理论水平上,研究了水液相环境下羟自由基诱导的苯丙氨酸分子的损伤机理。研究发现,羟自由基(水分子簇)抽取α-氢、β-氢、苯环-氢以及羟自由基与苯环加成均可致苯丙氨酸分子损伤。势能面计算表明,羟自由基(水分子簇)抽取α-氢和β-氢的最低能垒分别为68.4和89.3 kJ·mol-1,羟自由基抽取苯环-氢的最低能垒为111.6 kJ·mol-1,羟自由基加成到苯环不同位点碳的能垒大约在106.5~110.2 kJ·mol-1,羟自由基(水分子簇)抽α-氢和β-氢是显著的放热反应。结果表明,羟自由基(水分子簇)抽取α-氢是苯丙氨酸分子损伤的主要途径。
关键词: 苯丙氨酸损伤羟自由基能垒    
Abstract: The concerned reaction was researched at the MP2/ SMD/6-311++g(3df, 2pd)//WB97X-D/SMD/6-311++G(d, p) level of theory. Our study shows that α-H, β-H and benzene ring-H abstraction of hydroxyl radicals(water clusters) can induce the phenylalanine damage, as well as the addition of hydroxyl radicals to benzene ring. The calculation of potential energy surface shows that the lowest energy barrier for α-H and β-H abstraction of hydroxyl radicals(water clusters) is 68.4 and 89.3 kJ·mol-1 respectively, The lowest energy barrier for benzene ring-H abstraction of hydroxyl radicals(water clusters) is 111.6 kJ·mol-1, and the energy barrier for the addition of hydroxyl radicals to different sites of benzene ring is about 106.5 to 110.2 kJ·mol-1. The α-H and β-H abstraction of hydroxyl radicals(water clusters) is a significant exothermic reaction. These results showed that α-H abstraction of hydroxyl radicals(water clusters) is the main pathway of phenylalanine damage.
Key words: phenylalanine    damage    hydroxyl radicals    energy barrier
收稿日期: 2019-03-06 出版日期: 2019-11-25
CLC:  O641.12  
基金资助: 吉林省科技发展计划项目(20130101308JC);白城师范学院大学生创新项目(2018147).
通讯作者: 164912372@qq.com     E-mail: 164912372@qq.com
作者简介: 潘宇(1982―),ORCID:http: //orcid.org/0000-0002-6390-7772. 男,硕士,讲师,主要从事计算化学研究,E-mail:115591769@qq.com.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
潘宇
庄严
姜春旭
刘薛涛
陶思宇
佟华
王佐成

引用本文:

潘宇, 庄严, 姜春旭, 刘薛涛, 陶思宇, 佟华, 王佐成. 水液相环境下羟自由基诱导的苯丙氨酸分子损伤机理[J]. 浙江大学学报(理学版), 2019, 46(6): 705-715.

PAN Yu, ZHUANG Yan, JIANG Chunxu, LIU Xuetao, TAO Siyu, TONG Hua, WANG Zuocheng. Mechanism of phenylalanine damage induced by hydroxyl radicals in water-liquid phase environment. Journal of ZheJIang University(Science Edition), 2019, 46(6): 705-715.

链接本文:

https://www.zjujournals.com/sci/CN/10.3785/j.issn.1008-9497.2019.06.013        https://www.zjujournals.com/sci/CN/Y2019/V46/I6/705

1 GUERONG , ANSELMINON, CHIARELLAP, et al. Game-changing restraint of Ros-damaged phenylalanine, upon tumor metastasis[J]. Cell Death and Disease, 2018, 9:140. DOI: 10.1038/ s41419- 017- 0147-8
2 FANGY X, ZHANGW G,YANGS L, et al. The application and manufacture of Phenylalanine[J]. Guangzhou Chemical Industry,2000,28(4): 134-135.
3 KINOUCHIT, NISHIOH, NISHIUEHIY, et, al. Isolation and characterization of mammalian D-aspartyl endopeptidase[J]. Amino Acids, 2007(32): 79-85. DOI: 10.1007/s00726-006-0348-4
4 FUJIIN, NAKARNURAT, SADAKANEY, et, al. Differential susceptibility of alpha A-and alpha B-crystallin to gamma-ray irradiation[J]. Biochim Biophys Acta, 2007(1774): 345-350. DOI: 10.1016/j.bbapap.2006.12.001
5 HUANGZ J. Structures and Properties of the Amino Acids[D]. Beijing, University of Science and Technology of China, 2006, 11.
6 SNOEKL C, ROBERTSONE G, KROEMERR T, et al. Conformational landscape in amino acids:infrared and ultraviolet ion-dip spectroscopy of phenylala-nine in the gas phase[J]. Chem Phys Lett, 2000, 321(1/2): 49. DOI: 10.1016/S0009-2614(00)00320-1.
7 PÉREZC, MATAS, BLANCOS, et al. Jet-cooled rota-tional spectrum of laser-ablated phenylalanine[J]. J. Phys Chem A, 2011, 115(34): 9653. DOI: 10.1021/jp200800a
8 ZHANGX, LIC J, DONGL R, et al. Optical Isomerization mechanism of phenylalanine molecule based on amino group as proton transfer Bridge[J].Journal of Fudan University(Natural Science), 2017, 56(2): 241-250. DOI: 0427-7104(2017)02-0241-10.
9 PANY, GAOF, WANGY, et al. Mechanism of chiral enantiomer transition of phe molecules and catalysis of water molecules (clusters)[J]. Journal of Jilin University(Natural Science Edition), 2019, 57(6):1519-1529. DOI:10.13413/j.cnki.jdxblxb.2019019
10 MAH Y, ZHUANGY, JIANGC X, et al. Chiral enantiomer transition mechanism of phenylalanin molecule in water liquid environment[J]. Journal of Fudan University(Natural Science), 2019, 58(5):652-663.DOI:10.15943/j.cnki.fdxb-jns.2019.05.015.
11 LOECKIEL Z, JOHNH N, JAN N M C. Biomarkers of free radical damage applications in experimental animals and in humans(Rev)[J]. Free Radic Biol Med, 1999, 26(1/2): 202. DOI: 10.1016/ S0891-5849(98)00196-8.
12 TIANZ D, GAOF, YANGX C, et al. Mechanism of optical isomerism of α-Ala molecules with hydrogen bonds between amino and carboxyl groups and roles of water and hydroxyl radicals[J]. Journal of FuDan University(Natural Science), 2018, 57(04): 517-526+534. DOI: 10.15943/j.cnki.fdxb-jns. 2018.04.015.
13 YANGX C, GAOF, TONGH, et al. Optical isomerization of α-alanine molecules and roles of hydroxyl ions and hydroxyl radicals in water liquid phase environment[J]. Journal of Wuhan University(Science Edition) , 2019, 65(1):19-29. DOI:10.14188/j.1671-8836.2019.01.003
14 YANH Y, WANGZ C, TONGH, et al. Effect of optical isomerism of α-Ala molecules with hydrogen bonds between carboxyl groups and amino and the roles of hydroxyl radicals and hydroxyl group in water liquid environment[J]. Journal of Zhejiang University(Science Edition), 2019,46(1):48-57. DOI:10. 3785/j. issn. 1008-9497. 2019. 01. 007
15 LIUR, WANGZ C, YANGX C, et al. The mechanisms of lysine molecules optical isomerism and hydroxyl radical damage[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2018, 57(02): 123-130. DOI: 10.13471/j.cnki.acta.snus.2018.02.017.
16 ZHAOY, TANGZ Y, WUY, et al. Mechanism of optical isomerization of valine molecules with dual-hydrogen bonds between amino and carboxyl groups and the damage induced by hydroxyl radicals in water environment[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2018, 57(03): 96-107. DOI: 10.13471/j.cnki.acta.snus. 2018.03.014.
17 ZHAOY, WANGY, WANGZ C, et al. Mechanism of optical isomerism and damage of valine molecules in armchair swcnt induced by hydroxyl radicals in water environment[J]. Journal of Xianmen University(Natural Science), 2019,58(3):307-316.
18 JENGD C, GORDONM H . Long-range corrected hybrid density functional with damped atom–atom dispersion corrections[J]. Physical Chemistry Chemical Physics, 2008, 10, 6615–6620. DOI: 10.1039/B810189B.
19 ALEKSANDRV, MARENICEC J, CRAMER, et al. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions [J]. The Journal of Physical Chemistry B, 2009, 113(18): 6378–6396. DOI: 10.1021/ jp810292n.
20 GARRETTB C, TRUHLARD G. Criterion of minimum state density in the transition state theory of bimolecular reactions[J].The Journal of Chemical Physics, 1979,70(4):1593-1598.DOI:10.1063/1.437698.
21 ISHIDAK, MOROKUMAK, KOMORNICKIA. The intrinsic reaction coordinate. An ab initio calculation for HNC→HCN and H-+ CH4 →CH4+ H-[J]. The Journal of Chemical Physics, 1977, 66(5): 2153-2156. DOI: 10.1063/1.434152.
22 BINKLEYJ S, POPLEJ A. Moeller-Plesser theory for atomic ground state energies[J]. International Journal of Quantum Chemistry, 1975, 9(2): 229-236. DOI: 10.1002/qua.560090204.
23 FRISCHM J, TRUCKSG W, SCHLEGELH B, et al. Gaussian 09. Revision E.01[CP]. Wallingford CT: Pittsburgh U S A: Gaussian, Inc, 2016.
[1] 刘军, 姜春旭, 刘芳, 高峰, 张雪娇, 雷泽萍, 佟华, 王佐成. 水液相环境下α-丙氨酸Mn(Ⅱ)配合物旋光异构的理论研究[J]. 浙江大学学报(理学版), 2021, 48(6): 700-710.
[2] 徐锐英, 刘芳, 马宏源, 张雪娇, 潘宇, 杨晓翠, 王佐成. 气相环境下丙氨酸Ca2+配合物的手性转变机理及水分子的催化作用[J]. 浙江大学学报(理学版), 2020, 47(5): 630-641.
[3] 闫红彦, 王佐成, 佟华, 杨晓翠. 水环境下羧基与氨基间为单氢键的α-Ala旋光异构及羟自由基和氢氧根的作用[J]. 浙江大学学报(理学版), 2019, 46(1): 48-57.
[4] 沈学优,童裳伦,陈立,王琴. 铽离子与3,4-二羟苯丙氨酸的荧光反应及其分析应用[J]. 浙江大学学报(理学版), 1999, 26(1): 54-58.