Please wait a minute...
浙江大学学报(理学版)  2019, Vol. 46 Issue (2): 248-259    DOI: 10.3785/j.issn.1008-9497.2019.02.012
地球科学     
浙江玉环石峰山地区橄榄玄武岩中幔源包体的化学特征及其单斜辉石的“筛状结构”
苏昕瑶1, 厉子龙1,2,*
1.浙江大学地球科学学院,浙江杭州310027
2.浙江大学海洋学院,浙江舟山 316021
Chemical characteristics of the mantle-derived xenoliths from Shifeng Mountain and the sieved-texture of the clinopyroxene
Xinyao SU1, Zilong LI1,2,*
1.School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
2.Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang Province, China
 全文: PDF(18098 KB)   HTML  
摘要: 新生代玄武岩及其幔源包体是研究地球深部上地幔物质组成和成因的探针。对发现于浙江省东南沿海玉环县石峰山地区的橄榄玄武岩及其所含的大量二辉橄榄岩包体与单斜辉石捕虏晶进行了研究。结果表明,橄榄玄武岩中这些幔源包体主要为尖晶石相,橄榄石和辉石的Mg#分别在90%和90%~91%,对应为镁橄榄石和顽火辉石端元,尖晶石Cr#[Cr/(Cr+Al)]在0.1左右,为富铝尖晶石,与福建明溪、浙江新昌等地玄武岩中幔源包体的矿物成分相近,指示其地幔源区部分熔融程度不高。另外,单斜辉石捕虏晶呈浑圆状,其被捕获上涌过程中与岩浆发生了少量物质交换。镜下观察与电子探针背散射图像(BSE)显示,二辉橄榄岩与捕虏晶中的单斜辉石均发育有“筛状结构”,指示了明显的长英质熔体熔出现象。这种现象可以解释为早期K、Na含量较高的单斜辉石在岩浆上涌过程中发生减压,导致富含K、Na成分的熔体析出,随后经快速冷却形成,而非外来熔体交代形成。
关键词: 矿物成分特征筛状结构部分熔融幔源包体单斜辉石    
Abstract: Both of Cenozoic basalts and mantle-derived xenoliths can be as petrological probe for the earth's deep mantle components and magmatic genesis. Alkaline olivine basalt and a newly discovered mantle-derived spinel lherzolite xenolith and clinopyroxene xenocryst occur as a pipe in Shifeng Mountain of the southeast Yuhuan county in Zhejiang province, SE China. Mg# values of olivine of xenolith and orthopyroxene are ca. 90% and 90% to 91% separately, corresponding to the endmembers of forsterite and enstatite. Cr# values of spinel are ca. 0.1, being aluminum-enriched spinel, which is similar to the xenoliths from Mingxi in Fujian province and Xinchang in Zhejiang province, indicating the low degree of partial melting. The xenocryst with round shape has interaction with the melt. Backscattered electronic image shows that a sieved-texture and dark grey felsic melts are observed in clinopyroxene from spinel lherzolite xenolith and xenocryst. This phenomenon can be explained by low-pressure partial melting of the clinopyroxene of higher concept of K and Na, rather than replacement by melt.
Key words: chemical characteristics of minerals    sieved-texture    partial melting    xenolith    clinopyroxene
收稿日期: 2018-05-18 出版日期: 2019-03-25
CLC:  P 57, P 58  
基金资助: 浙江省国土资源厅科研项目(2015005); 国家自然科学基金资助项目(91858213,41541018); 浙江省高等教育“十三五”教学改革项目研究项目(jg20180025).
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
苏昕瑶
厉子龙

引用本文:

苏昕瑶, 厉子龙. 浙江玉环石峰山地区橄榄玄武岩中幔源包体的化学特征及其单斜辉石的“筛状结构”[J]. 浙江大学学报(理学版), 2019, 46(2): 248-259.

Xinyao SU, Zilong LI. Chemical characteristics of the mantle-derived xenoliths from Shifeng Mountain and the sieved-texture of the clinopyroxene. Journal of ZheJIang University(Science Edition), 2019, 46(2): 248-259.

链接本文:

https://www.zjujournals.com/sci/CN/10.3785/j.issn.1008-9497.2019.02.012        https://www.zjujournals.com/sci/CN/Y2019/V46/I2/248

1 CHENX Y, CHENL H, CHENY, et al.Distribution summary of Cenozoic basalts in central and eastern China[J]. Geological Journal of China Universities, 2014(4):507-519.DOI:10.3969/j.issn.1006-7493.2014.04.002
2 LIUR X, CHENW J, SUNJ Z ,et al.The K-Ar Age and Tectonic Environment of Cenozoic Volcanic Rock in China[M] // LIU R X. The Age and Geochemistry of Cenozoic Volcanic Rock in China. Beijing: Seismological Press, 1992:1-43.
3 HO K S, CHENJ C, LO C H, et al.40 Ar–39 Ar dating and geochemical characteristics of late Cenozoic basaltic rocks from the Zhejiang–Fujian region, SE China: Eruption ages, magma evolution and petrogenesis[J]. Chemical Geology, 2003, 197(1): 287- 318.
4 ZENGG, ZHENGL B, CHENL H, et al.Influence of ridge suction on cenozoic basaltic magmatism in the surroundings of the South China Sea[J]. Geological Journal of China Universities, 2017,23(3):373-382.
5 ZOUH B, ZINDLERA, XUX S, et al. Major, trace element, and Nd, Sr and Pb isotope studies of Cenozoic basalts in SE China: Mantle sources, regional variations, and tectonic significance[J]. Chemical Geology, 2000, 171(1): 33-47.DOI:10.1016/s0009-2541(00)00243-6
6 SAKUYAMAT, TIANW, KIMURAJ I, et al.Melting of dehydrated oceanic crust from the stagnant slab and of the hydrated mantle transition zone: Constraints from Cenozoic alkaline basalts in eastern China[J]. Chemical Geology, 2013, 359(6):32-48.DOI:10.1016/j.chemgeo.2013.09.012
7 LIY Q, MA C Q, ROBINSONP T, et al. Recycling of oceanic crust from a stagnant slab in the mantle transition zone:Evidence from Cenozoic continental basalts in Zhejiang province, SE China[J]. Lithos, 2015,230: 146-165.DOI:10.1016/j.lithos.2015.05.021
8 HUANGW K, XUJ G, GAOZ M, et al.Mineralogical study of spinel-lherzolite xenoliths from basalts in southern and eastern China[J]. Acta Mineralogic Ainica, 1982(3):17-29.
9 YUY. The Study of Olivine and Zircon from the Cenozoic Basalts in the Southeast of China[D]. Nanjing:Nanjing University, 2012.
10 LIUC Z, WUF Y, SUNJ, et al.The Xinchang peridotite xenoliths reveal mantle replacement and accretion in southeastern China[J]. Lithos, 2012, 150(10): 171-187.DOI:10.1016/j.lithos.2012.03.019
11 XUX S, O’REILLYS Y, GRIFFINW L, et al.Genesis of Young lithospheric mantle in southeastern China: An LAM–ICPMS trace element study[J]. Journal of Petrology, 2000, 41(1):111-148.DOI:10.1093/petrology/41.1.111
12 XUX S, O'REILLYS Y, GRIFFINW L, et al.Enrichment of upper mantle peridotite: Petrological, trace element and isotopic evidence in xenoliths from SE China[J]. Chemical Geology, 2003, 198(3):163-188.DOI:10.1016/s0009-2541(03)00004-4
13 HAOY T, XIAQ K, LIQ W, et al. Partial melting control of water contents in the cenozoic lithospheric mantle of the Cathaysia block of south China[J]. Chemical Geology, 2014, 380:7-19.DOI:10.1016/j.chemgeo.2014.04.017
14 LIUJ, XIAQ K, DELOULEE, et al.Water content and oxygen isotopic composition of Alkali Basalts from the Taihang Mountains, China: Recycled oceanic components in the mantle source[J]. Journal of Petrology, 2014, 56(4):681-702.DOI:10.1093/petrology/egv013
15 CHENH, XIAQ K, INGRINJ, et al.Changing recycled oceanic components in the mantle source of the Shuangliao Cenozoic basalts, NE China: New constraints from water content[J]. Tectonophysics, 2015, 650:113-123.DOI:10.1016/j.tecto.2014.07.022
16 LIUS C, XIAQ K, CHOIS H, et al.Continuous supply of recycled Pacific oceanic materials in the source of Cenozoic basalts in SE China: the Zhejiang case[J]. Contributions to Mineralogy and Petrology, 2016, 171(12):100.DOI:10.1007/s00410-016-1310-4
17 LIUS C. Water Content and Geochemistry of the Cenozoic Basalts in SE China:Implications for Enrichment in the Mantle Source of Intra-plate Basalts[D]. Hefei:University of Science and Technology of China,2017.
18 HUANGJ L, ZHAOD P.High‐resolution mantle tomography of China and surrounding regions[J]. Journal of Geophysical Research Solid Earth, 2006, 111(9):B09305.DOI:10.1029/2005jb004066
19 NIUY L.Global Tectonics and Geodynamics : A Petrological and Geochemical Approach[M]. Beijing: Science Press, 2013.
20 NIUY L.Geological understanding of plate tectonics: Basic concepts, illustrations, examples and new perspectives[J]. Global Tectonics & Metallogeny, 2014, 10(1):23-46.
21 NIUY L, LIUY, XUEQ Q, et al.Exotic origin of the Chinese continental shelf: New insights into the tectonic evolution of the western Pacific and eastern China since the Mesozoic[J]. Science Bulletin, 2015, 60(18):1598-1616.DOI:10.1007/s11434-015-0891-z
22 CARPENTERR L, EDGARA D, THIBAULTY.Origin of spongy textures in clinopyroxene and spinel from mantle xenoliths, Hessian Depression, Germany[J]. Mineralogy & Petrology, 2002, 74(2/3/4): 149-162.DOI:10.1007/s007100200002
23 SHAWC S J, HEIDELBACHF, DINGWELLD B.The origin of reaction textures in mantle peridotite xenoliths from Sal Island, Cape Verde: The case for “metasomatism” by the host lava[J]. Contributions to Mineralogy & Petrology, 2006, 151(6): 681-697.DOI:10.1007/s00410-006-0087-2
24 SUB X, ZHANGH F, SAKYIP A, et al.The origin of spongy texture in minerals of mantle xenoliths from the Western Qinling, central China[J]. Contributions to Mineralogy & Petrology, 2011, 161(3): 465-482.DOI:10.1007/s00410-010-0543-x
25 LUJ G, ZHENGJ P, GRIFFINW L, et al.Microscale effects of melt infiltration into the lithospheric mantle: Peridotite xenoliths from Xilong, South China[J]. Lithos, 2015, 232: 111-123.DOI:10.1016/j.lithos.2015.06.013
26 FORDC E, RUSSELLD G, CRAVENJ A, et al.Olivine-liquid equilibria: Temperature, pressure and composition dependence of the crystal/liquid cation partition coefficients for Mg, Fe2+, Ca and Mn[J]. Journal of Petrology, 1983, 24(3): 256-266.DOI:10.1093/petrology/24.3.256
27 ARTHJ G.Behavior of trace elements during magmatic processes: A summary of theoretical models and their applications[J]. Journal of Research of the U.S. Geological Survey, 1976,4(1):41-47.
28 IONOVD A, CHANEFOI, BODINIERJ L.Origin of Fe-rich lherzolites and wehrlites from Tok, SE Siberia by reactive melt percolation in refractory mantle peridotites[J]. Contributions to Mineralogy & Petrology, 2005, 150(3):335-353.DOI:10.1007/s00410-005-0026-7
29 XIAL Q, XIAZ C.The nature and role of fluids in the upper mantle-evidence in mantle-derived iherzolite xenoliths from Nvshan, China[J]. Northwest Geoscience, 1992(2):7-22.
30 KEMPTONP D.Mineralogic and geochemical evidence for differing styles of metasomatism in spinel lherzolite xenoliths: Enriched mantle source regions of basalts?[M].New York: Acad Press, 1987: 45-89.
31 KUO L C, ESSENEE J.Petrology of spinel harzburgite xenoliths from the Kishb Plateau, Saudi Arabia[J]. Contributions to Mineralogy & Petrology, 1986, 93(3): 335-346.DOI:10.1007/bf00389392
32 WANGY F, ZHANGJ F.The reaction mechanism of sieve-textured orthopyroxene:Implications for lithospheric mantle rejuvenation[J]. Acta Petrologica Et Mineralogica, 2013, 32(5): 604-612.DOI:10.3969/j.issn.1000-6524.2013.05.005
33 GUZMICST, KODOLáNYIJ, KOVáCSI, et al.Primary carbonatite melt inclusions in apatite and in K-feldspar of clinopyroxene-rich mantle xenoliths hosted in lamprophyre dikes (Hungary)[J]. Mineralogy & Petrology, 2008, 94(3/4):225.DOI:10.1007/s00710-008-0014-5
34 SHAWC S J, KLüGELA.The pressure and temperature conditions and timing of glass formation in mantle-derived xenoliths from Baarley, West Eifel, Germany: The case for amphibole breakdown, lava infiltration and mineral-melt reaction[J]. Mineralogy & Petrology, 2002, 74(2/3/4):163-187.
35 ZENGG, CHENL H, HUS L, et al.Genesis of Cenozoic low-Ca alkaline basalts in the Nanjing basaltic field, eastern China: The case for mantle xenolith-magma interaction[J]. Geochemistry Geophysics Geosystems, 2013, 14(5):1660-1677.DOI:10.1002/ggge.20127
36 ZHARIKOVV A, LSHBULATOVR A, CHUDIONOVSKIKHL T.High pressure clinopyroxene and the eclogite barrier[J]. Soviet Geology and Geophysics, 1984, 25: 58-61.
37 LIUX W, JINZ M.Magnesium iron amphibole and monoclinic sodium feldspar solution in eclogite eclogite[J]. Bulletin of Mineralogy, Petrology and Geochemistry,2008,27(s1):379-380.DOI:10.3969/j.issn.1007-2802.2008.z1.203
No related articles found!