Please wait a minute...
浙江大学学报(理学版)  2021, Vol. 48 Issue (6): 718-727    DOI: 10.3785/j.issn.1008-9497.2021.06.010
生命科学     
片段化森林中檵木幼苗种内叶经济性状变异及其驱动因子
陈春1, 何建平2, 郑诗璐3, 吴雁南1, 王莹1,4, 徐高福2, 于明坚1
1.浙江大学 生命科学学院,浙江 杭州 310058
2.淳安县新安江生态开发集团有限公司,浙江 淳安 311700
3.西澳大学 生物科学学院,珀斯 6009
4.浙江大学 农业与生物技术学院,浙江 杭州 310058
The driving factors of intraspecific leaf economic traits variations of Loropetalum chinense seedlings in fragmented forest
CHEN Chun1, HE Jianping2, ZHENG Shilu3, WU Yannan1, WANG Ying1,4, XU Gaofu2, YU Mingjian1
1.College of Life Sciences,Zhejiang University,Hangzhou 310058,China
2.Xin'an River Ecological Development Corporation,Chun'an 311700,Zhejiang Province,China
3.School of Biological Sciences,University of Western Australia,Perth 6009,Australia
4.College of Agriculture and Biotechnology,Zhejiang University,Hangzhou 310058,China
 全文: PDF(1224 KB)   HTML  
摘要: 在异质性生境中,种内功能性状变异有助于植物对环境的适应,进而影响种群更新、群落构建和生态系统过程。探讨了种内叶经济性状的变异及受生境异质性的塑造情况。以千岛湖片段化生境中的常见种檵木(Loropetalum chinense)的幼苗为研究对象,测定了200株檵木幼苗个体水平的7个叶经济性状(比叶面积SLA、叶全碳量C、叶全氮量N等)及其对应的生境因子(郁闭度、土壤全碳量、土壤全氮量等),采用相关性检验、主成分分析和线性混合效应模型等方法探讨片段化森林中檵木幼苗的种内叶经济性状变异及生境异质性对该变异的驱动作用。结果显示:(1) 在7个叶经济性状所构成的21对相关性分析中,有12对显著相关。经主成分分析降维后,主成分1(PC1)占性状总变异的43.02%,主要与比叶面积、叶绿素浓度、叶全氮量呈正相关,与叶干物质质量分数和叶碳氮比呈负相关,体现了檵木的种内叶经济谱,可反映叶片的最大光合效率。(2)片段化对生境条件和叶经济性状均有影响。岛屿森林群落的郁闭度显著低于大陆。相对于大陆,岛屿中的檵木幼苗趋向于更小的PC1值(缓慢投资-收益策略);大岛边缘较大岛内部偏向于更小的PC1值。(3)生境因子中,郁闭度对PC1具有显著正效应。研究表明,片段化生境中的檵木在幼苗阶段存在叶经济谱,生境片段化可通过影响生境条件进而改变檵木幼苗的叶经济性状。随着生境片段化程度的加剧,檵木幼苗的叶经济性状逐渐向缓慢投资-收益策略靠拢。
关键词: 功能性状叶经济谱生境片段化生态适应种内变异千岛湖    
Abstract: Intraspecific trait variations contribute to the adaptability of plant to the heterogeneous environments,which affect population regeneration,community assembly and ecosystem processes.This study aimed to explore the intraspecific variations of leaf economic traits and how it was shaped by habitat heterogeneity in fragmented forest.We measured seven leaf economic traits (i.e.specific leaf area (SLA),leaf total carbon content (C),leaf total nitrogen content (N),etc.) of seedlings (n=200) of a common native shrub species,Loropetalum chinense,in the Thousand Island Lake (TIL),as well as in site habitat conditions (i.e.canopy closure,soil total carbon content,soil total nitrogen content,etc.) of each seedling.We then performed the correlation test,principal component analysis,linear mixed effects model and so on to examine the variability of leaf traits and underlying environmental drivers.The results are as follows: (1) 12 of the 21 correlations composed of seven leaf economic traits are significant.Principal component analysis (PCA) showed that PC1 explains 43.02% of the total trait variations,which is positively correlated with SLA,N and chlorophyll concentration (Chl),and negatively correlated with leaf dry matter content (LDMC) and leaf carbon nitrogen ratio (C∶N),indicating an intraspecific economics spectrum of L.chinense seedlings that reflects maximum photosynthetic capacity. (2) Habitat fragmentation alters the environmental conditions and leaf economic traits of L.chinense seedlings.Specifically,canopy closure is significantly lower on islands than in mainland.On the other hand,leaf traits of L.chinense seedlings on islands are with lower PC1 value (i.e.the 'slow' end of leaf economics spectrum) than seedlings in mainland.Within islands,leaf traits of L.chinense seedlings at the edge of large island are with lower PC1 value compared to seedlings at the interior of large island.(3) The environmental influences on intraspecific leaf economic traits of L.chinense are mainly manifested as a significant positive effect of canopy closure on PC1.This study shows that leaf economics spectrum exists at the growth stage of L.chinense seedlings in fragmented habitats.Moreover,habitat fragmentation can affect intraspecific leaf economic traits of L.chinense by altering habitat conditions.Habitat fragmentation initiates the shift of leaf economic traits of L.chinense seedlings towards a slower resource-use strategy.
Key words: functional traits    leaf economics spectrum    habitat fragmentation    ecological adaptation    intraspecific variation    Thousand Island Lake
收稿日期: 2021-01-20 出版日期: 2021-11-25
CLC:  Q 948.1  
基金资助: 国家自然科学基金资助项目(31870401,31930073,31600340,31901211) ;国家重点研发计划项目(2018YFE0112800) .
通讯作者: ORCID:https://orcid.org/0000-0001-8060-8427,E-mail:fishmj@zju.edu.cn.     E-mail: fishmj@zju.edu.cn
作者简介: 陈春(1996—),ORCID:https://orcid.org/0000-0002-4007-5635,女,硕士研究生,主要从事生物多样性和植物生态学研;
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈春
何建平
郑诗璐
吴雁南
王莹
徐高福
于明坚

引用本文:

陈春, 何建平, 郑诗璐, 吴雁南, 王莹, 徐高福, 于明坚. 片段化森林中檵木幼苗种内叶经济性状变异及其驱动因子[J]. 浙江大学学报(理学版), 2021, 48(6): 718-727.

CHEN Chun, HE Jianping, ZHENG Shilu, WU Yannan, WANG Ying, XU Gaofu, YU Mingjian. The driving factors of intraspecific leaf economic traits variations of Loropetalum chinense seedlings in fragmented forest. Journal of Zhejiang University (Science Edition), 2021, 48(6): 718-727.

链接本文:

https://www.zjujournals.com/sci/CN/10.3785/j.issn.1008-9497.2021.06.010        https://www.zjujournals.com/sci/CN/Y2021/V48/I6/718

1 POORTER L,BONGERS F.Leaf traits are good predictors of plant performance across 53 rain forest species[J].Ecology,2006,87(7):1733-1743. DOI:10.1890/0012-9658(2006)87[1733:LTAGPO]2.0.CO;2
2 WRIGHT I J,REICH P B,WESTOBY M,et al.The worldwide leaf economics spectrum[J]. Nature,2004,428(6985):821-827. DOI:10.1038/nature02403
3 WRIGHT I J,REICH P B,CORNELISSEN J H C,et al.Assessing the generality of global leaf trait relationships[J]. New Phytologist,2005,166(2):485-496. DOI:10.1111/j.1469-8137.2005.01349.x
4 REICH P B,WRIGHT I J,LUSK C H.Predicting leaf physiology from simple plant and climate attributes:A global GLOPNET analysis[J].Ecological Applications,2007,17(7):1982-1988. DOI:10.1890/06-1803.1
5 LAVOREL S.Plant functional effects on ecosystem services[J].Journal of Ecology,2013,101(1):4-8. DOI:10.1111/1365-2745.12031
6 SIEFERT A,RAVENSCROFT C,WEISER M D,et al.Functional beta-diversity patterns reveal deterministic community assembly processes in eastern North American trees[J].Global Ecology and Biogeography,2013,22(6):682-691. DOI:10.1111/geb.12030
7 GORNISH E S,PRATHER C M.Foliar functional traits that predict plant biomass response to warming[J]. Journal of Vegetation Science,2014,25(4):919-927. DOI:10.1111/jvs.12150
8 MAIRE V,GROSS N,HILL D,et al.Disentangling coordination among functional traits using an individual-centred model:Impact on plant performance at intra-and inter-specific levels[J].PLoS One,2013,8(10):e77372. DOI:10.1371/journal.pone.0038345
9 JIN Y,DIDHAM R K,YUAN J F,et al. Cross-scale drivers of plant trait distributions in a fragmented forest landscape[J].Ecography,2020,43(3):467-479. DOI:10.1111/ecog.04704
10 SIEFERT A,VIOLLE C,CHALMANDRIER L,et al.A global meta-analysis of the relative extent of intraspecific trait variation in plant communities[J].Ecology Letters,2015,18(12):1406-1419. DOI:10.1111/ele.12508
11 BOLNICK D I,AMARASEKARE P,ARAUJO M S,et al.Why intraspecific trait variation matters in community ecology[J].Trends in Ecology & Evolution,2011,26(4):183-192. DOI:10.1016/j.tree.2011.01.009
12 LAUGHLIN D C,JOSHI C,VAN BODEGOM P M,et al.A predictive model of community assembly that incorporates intraspecific trait variation[J].Ecology Letters,2012,15(11):1291-1299. DOI:10.1111/j.1461-0248.2012.01852.x
13 TURCOTTE M M,LEVINE J M.Phenotypic plasticity and species coexistence[J].Trends in Ecology & Evolution,2016,31(10):803-813. DOI:10.1016/j.tree.2016.07.013
14 WRIGHT J P,SUTTON-GRIER A.Does the leaf economic spectrum hold within local species pools across varying environmental conditions?[J].Functional Ecology,2012,26(6):1390-1398. DOI:10.1111/1365-2435.12001
15 LAFOREST-LAPOINTE I,MARTINEZ-VILALTA J,RETANA J.Intraspecific variability in functional traits matters:Case study of Scots pine[J].Oecologia,2014,175(4):1337-1348. DOI:10.1007/s00442-014-2967-x
16 NIINEMETS U.Is there a species spectrum within the world-wide leaf economics spectrum? Major variations in leaf functional traits in the mediterranean sclerophyll Quercus ilex[J].New Phytologist,2015,205(1):79-96. DOI:10.1111/nph.13001
17 FAJARDO A,SIEFERT A.Intraspecific trait variation and the leaf economics spectrum across resource gradients and levels of organization[J].Ecology,2018,99(5):1024-1030. DOI:10.1002/ecy.2194
18 ANDEREGG L D L,BERNER L T,BADGLEY G,et al.Within-species patterns challenge our understanding of the leaf economics spectrum[J].Ecology Letters,2018,21(5):734-744. DOI:10. 1111/ele.12945
19 MARTIN A R,RAPIDEL B,ROUPSARD O,et al.Intraspecific trait variation across multiple scales:The leaf economics spectrum in coffee[J].Functional Ecology,2017,31(3):604-612. DOI:10.1111/1365-2435.12790
20 FLETCHER JR R J,DIDHAM R K,BANKS-LEITE C,et al.Is habitat fragmentation good for biodiversity?[J]. Biological Conservation,2018,226:9-15. DOI:10.1016/j.biocon.2018.07.022
21 HADDAD N M,BRUDVIG L A,CLOBERT J,et al.Habitat fragmentation and its lasting impact on Earth's ecosystems[J].Science Advances,2015,1(2):e1500052. DOI:10.1126/sciadv.1500052
22 LIU J J,COOMES D A,GIBSON L,et al.Forest fragmentation in China and its effect on biodiversity[J].Biological Reviews,2019,94(5):1636-1657. DOI:10. 1111/brv.12519
23 陈莹婷,许振柱.植物叶经济谱的研究进展[J].植物生态学报,2014,38(10):1135-1153. DOI:10.3724/SP.J.1258.2014.00108 CHEN Y T,XU Z Z.Review on research of leaf economics spectrum[J].Chinese Journal of Plant Ecology,2014,38(10):1135-1153. DOI:10.3724/SP.J.1258.2014.00108
24 ALBERT C H,THUILLER W,YOCCOZ N G,et al.Intraspecific functional variability:Extent,structure and sources of variation[J]. Journal of Ecology,2010,98(3):604-613. DOI:10.1111/j.1365-2745.2010. 01651.x
25 KIKUZAWA K,LECHOWICZ M J. Ecology of Leaf Longevity[M].Tokyo:Springer Press,2011:87-97. doi:10.1007/978-4-431-53918-6_8
26 KITAJIMA K,CORDERO R A,JOSEPH WRIGHT S. Leaf life span spectrum of tropical woody seedlings:Effects of light and ontogeny and consequences for survival[J]. Annals of Botany,2013,112(4):685-699. DOI:10.1093/aob/mct036
27 COBLE A P,CAVALERI M A.Vertical leaf mass per area gradient of mature sugar maple reflects both height-driven increases in vascular tissue and light-driven increases in palisade layer thickness[J].Tree Physiology,2017,37(10):1337-1351. DOI:10.1093/treephys/tpx016
28 KNOPS J M H,REINHART K.Specific leaf area along a nitrogen fertilization gradient[J].American Midland Naturalist,2000,144(2):265-272. DOI:10. 1674/0003-0031(2000)144[0265:SLAAAN]2.0.CO;2
29 戎福仁,王祖华,吴初平,等.生境片段化对千岛湖次生马尾松林土壤理化性质的影响[J].浙江大学学报(理学版),2018,45(6):748-755,764. DOI:10.3785/j.issn.1008-9497.2018.06.017 RONG F R,WANG Z H,WU C P,et al.Effects of habitat fragmentation on soil properties of the secondary Masson pine (Pinus massoniana) forests of the Thousand Island Lake region[J].Journal of Zhejiang University (Sciences Edition),2018,45(6):748-755,764. DOI:10.3785/j.issn.1008-9497. 2018.06.017
30 VIOLLE C,NAVAS M L,VILE D,et al.Let the concept of trait be functional![J].Oikos,2007,116(5):882-892. DOI:10.1111/j.0030-1299.2007. 15559.x
31 POORTER L.Are species adapted to their regeneration niche,adult niche,or both?[J].The American Naturalist,2007,169(4):433-442. DOI:10.1086/512045
32 孟影,马姜明,王永琪,等.基于Maxent模型的檵木分布格局模拟[J].生态学报,2020,40(22):8287-8296. DOI:10.5846/stxb201911252549 MENG Y,MA J M,WANG Y Q,et al.Prediction of distribution area of Loropetalum chinense based on Maxent model[J].Acta Ecologica Sinica,2020,40(22):8287-8296. DOI:10.5846/stxb201911252549
33 涂洪润,李娇凤,刘润红,等.桂林岩溶石山檵木种群空间格局及其关联性[J].应用生态学报,2019,30(8):2621-2630. DOI:10.13287/j.1001-9332. 201908.016 XU H R,LI J F,LIU R H,et al.Spatial distribution patterns and association of Loropetalum chinense population in karst hills of Guilin,southwest China[J].Chinese Journal of Applied Ecology,2019,30(8):2621-2630. DOI:10.13287/j.1001-9332.201908.016
34 周璟,王耀晟,吴宗贵.檵木药用价值研究概述[J].中华中医药杂志,2014,29(7):2283-2286. ZHOU J,WANG Y S,WU Z G.Study of medical value of Loropetalum chinense[J].China Journal of Traditional Chinese Medicine and Pharmacy,2014,29(7):2283-2286.
35 LIU J L,MATTHEWS T J,ZHONG L,et al.Environmental filtering underpins the island species-area relationship in a subtropical anthropogenic archipelago[J].Journal of Ecology,2020,108(2):424-432. DOI:10.1111/1365-2745.13272
36 PEREZ-HARGUINDEGUY N,DIAZ S,GARNIER E,et al.New handbook for standardised measurement of plant functional traits worldwide[J].Australian Journal of Botany,2013,61(3):167-234. DOI:10.1071/BT12225
37 骆杨青,余梅生,余晶晶,等.千岛湖地区常见木本植物性状和相对多度对幼苗植食作用的影响[J].植物生态学报,2017,41(10):1033-1040. DOI:10.17521/cjpe.2017.0073 LUO Y Q,YU M S,YU J J,et al.Effects of plant traits and the relative abundance of common woody species on seedling herbivory in the Thousand Island Lake region[J].Chinese Journal of Plant Ecology,2017,41(10):1033-1040. DOI:10.17521/cjpe.2017. 0073
38 REICH P B,WALTERS M B,ELLSWORTH D S.From tropics to tundra:Global convergence in plant functioning[J]. Proceedings of the National Academy of Sciences,1997,94(25):13730-13734. DOI:10. 1073/pnas.94.25.13730
39 CROFT H,CHEN J M,LUO X Z,et al.Leaf chlorophyll content as a proxy for leaf photosynthetic capacity[J].Global Change Biology,2017,23(9):3513-3524. DOI:10.1111/gcb.13599
40 张珂,何明珠,李新荣,等.阿拉善荒漠典型植物叶片碳、氮、磷化学计量特征[J].生态学报,2014,34(22):6538-6547. DOI:10.5846/stxb201302270310 ZHANG K,HE M Z,LI X R,et al.Foliar carbon,nitrogen and phosphorus stoichiometry of typical desert plants across the Alashan Desert[J].Acta Ecologica Sinica,2014,34(22):6538-6547. DOI:10.5846/stxb201302270310
41 国家林业局.森林土壤水分-物理性质(LY/T1215—1999)[S]. 北京:中国标准出版社,1999. doi:10.3969/j.issn.1003-9139.2018.07.001 National Forestry Administration.Determination of Forest Soil Water-Physical Properties (LY/T1215-1999)[S]. Beijing:China Standards Press,1999. doi:10.3969/j.issn.1003-9139.2018.07.001
42 REVELLE W.Psych:Procedures for Personality and Psychological Research[D].Evanston:Northwestern University,2019. https://CRAN.R-project.org/package=psych. doi:10.31234/osf.io/t4q9w
43 OKSANEN J,BLANCHET F G,FRIENDLY M,et al.Vegan:Community Ecology Package,Package VersionR 2.5-7[EB/OL].(2020-11-28).https://CRAN.R-project.org/package=vegan.
44 BATES D,M?ECHLER M,BOLKER B,et al.Fitting linear mixed-effects models using lme4[J].Journal of Statistical Software,2015,67(1):1-48. DOI:10.18637/jss.v067.i01
45 KUZNETSOVA A,BROCKHOFF P B,CHRISTENSEN R H B. LmerTest Package:Tests in linear mixed effects models[J].Journal of Statistical Software,2017,82(13):1-26. DOI:10. 18637/jss.v082.i13.
46 BARTO? K.MuMIn:Multi-Model Inference,R Package Version 1.43.17[EB/OL].(2020-04-15).https://CRAN.R-project.org/package=MuMIn.
47 R Core Team.R:A Language and Environment for Statistical Computing[EB/OL].Vienna,Austria:R Foundation for Statistical Computing,2019.https://www.R-project.org.
48 钟巧连,刘立斌,许鑫,等.黔中喀斯特木本植物功能性状变异及其适应策略[J].植物生态学报,2018,42(5):562-572. DOI:10.17521/cjpe.2017.0270 ZHONG Q L,LIU L B,XU X,et al.Variations of plant functional traits and adaptive strategy of woody species in a karst forest of central Guizhou province,southwestern China[J].Chinese Journal of Plant Ecology,2018,42(5):562-572. DOI:10.17521/cjpe. 2017.0270
49 CHEN Z H,ZHA T S,JIA X,et al.Leaf nitrogen is closely coupled to phenophases in a desert shrub ecosystem in China[J].Journal of Arid Environments,2015,122:124-131. DOI:10.1016/j.jaridenv.2015.07.002
50 徐朝斌,钟全林,程栋梁,等.基于地理种源的刨花楠苗木比叶面积与叶片化学计量学关系[J].生态学报,2015,35(19):6507-6515. doi:10.5846/stxb201402070217 XU C B,ZHONG Q L,CHENG D L,et al.Variation in relationships between SLA and leaf C,N,P stoichiometry in Machilus pauhoi among locations[J].Acta Ecologica Sinica,2015,35(19):6507-6515. doi:10.5846/stxb201402070217
51 MAJEKOVA M,DE BELLO F,DOLEZAL J,et al.Plant functional traits as determinants of population stability[J].Ecology,2014,95(9):2369-2374. DOI:10.1890/13-1880.1
52 REICH P B.The world-wide 'fast-slow' plant economics spectrum:A traits manifesto[J]. Journal of Ecology,2014,102(2):275-301. DOI:10.1111/1365-2745.12211
53 GONZALEZ E,SALVO A,VALLADARES G.Arthropods on plants in a fragmented Neotropical dry forest:A functional analysis of area loss and edge effects[J].Insect Science,2015,22(1):129-138. DOI:10.1111/1744-7917.12107
54 DE GUIMAR?ES C D,VIANA J P R,CORNELISSEN T. A meta-analysis of the effects of fragmentation on herbivorous insects[J].Environmental Entomology,2014,43(3):537-545. DOI:10.1603/EN13190
55 MALDONADO-LóPEZ Y,CUEVAS-REYES P,STONE G N,et al. Gall wasp community response to fragmentation of oak tree species:Importance of fragment size and isolated trees[J]. Ecosphere,2015,6(3):1-15. DOI:10.1890/ES14-00355.1
56 DRAKE P L,FROEND R H,FRANKS P J.Linking hydraulic conductivity and photosynthesis to water-source partitioning in trees versus seedlings[J].Tree Physiology,2011,31(7):763-773. DOI:10.1093/treephys/tpr068
57 HAN W X,FANG J Y,GUO D L,et al.Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China[J].New Phytologist,2005,168(2):377-385. DOI:10.1111/j.1469-8137.2005. 01530.x
[1] 戎福仁, 王祖华, 吴初平, 徐高福, 徐建斌, 李铭红, 于明坚. 生境片段化对千岛湖次生马尾松林土壤理化性质的影响[J]. 浙江大学学报(理学版), 2018, 45(6): 748-755,764.
[2] 余晶晶, 金毅, 郑诗璐, 胡广, 刘金亮, 袁金凤, 刘佳佳, 于明坚. 千岛湖被子植物枝叶性状分化及其与种多度的关系[J]. 浙江大学学报(理学版), 2017, 44(4): 437-445.
[3] 田云, 金毅, 王志平, 苏晓飞, 胡广, 徐礼根, 于明坚. 千岛湖岛屿马尾松林不同耐阴性植物幼苗动态研究[J]. 浙江大学学报(理学版), 2016, 43(4): 426-435.