Please wait a minute...
浙江大学学报(理学版)  2021, Vol. 48 Issue (6): 711-717    DOI: 10.3785/j.issn.1008-9497.2021.06.009
化学     
基于电化学发光和阻抗技术研究DNA单碱基错配
姚武1, 崔朋1, 胡晓倩2
1.黄山学院 化学化工学院,安徽 黄山 245041
2.黄山学院 生命与环境科学学院,安徽 黄山 245041
Study on the single-base mismatch DNA by electrochemiluminescence and impedance biosensor
YAO Wu1, CUI Peng1, HU Xiaoqian2
1.College of Chemistry and Chemical Engineering, Huangshan University, Huangshan 245041, Anhui Province, China
2.College of Life and Environment Sciences, Huangshan University, Huangshan 245041, Anhui Province, China
 全文: PDF(1050 KB)   HTML  
摘要: 单碱基错配的识别和稳定性差异在核酸多态性研究中至关重要。在同一电化学传感器平台上,采用电化学发光(ECL)和电化学阻抗(EIS)2种技术,协同研究DNA链中不同类型和不同位点的单碱基错配识别和稳定性差异。电极表面具有茎环构象的探针DNA与完全互补DNA、不同类型或不同位点单碱基错配DNA杂交前后的ECL和EIS信号强度变化有显著差异。信号强度变化可揭示单碱基错配识别的稳定性。结果表明,DNA链中心位点的C-A单碱基错配稳定性低于链两端的,靠近键合电极表面双链链端的C-A单碱基错配稳定性低于非键合电极表面双链链端的,同一中心位点C-X碱基对的稳定性顺序为C-G?C-T>C-A≥C-C。研究结果可为核酸多态性研究提供参考。
关键词: 电化学发光电化学阻抗生物传感器单碱基错配    
Abstract: Single-base mismatch is very important in the study of nucleic acid polymorphism. The discrimination and the stability differences of single-base mismatches of different types or on different sites were studied on the same electrochemical biosensor by electrochemiluminescence (ECL) and electrochemical impedance spectroscopy (EIS) simultaneously in this paper. Significant changes of ECL and EIS signals could be detected before and after hybridizations of probe DNA being stem-loop conformation on the electrode surface with completely complementary DNA and single-base mismatch DNA of different types or on different sites. The variation of these signal changes revealed the stability of single-base mismatch. The results showed that the stability of C-A single-base mismatch at the center position of DNA chain was lower than that at both ends of the chain, and the stability of C-A single-base mismatch near the terminal of double strand DNA bonding to the electrode surface was lower than that at the terminal of double strand DNA not bonding to the electrode surface. The stability order of C-X base pair at the same center was ranked as C-G?C-T > C-A ≥ C-C. The results of this study provide a reference for the study of nucleic acid polymorphism.
Key words: electrochemiluminescence    electrochemical impedance spectroscopy    biosensor    single-base mismatch
收稿日期: 2020-04-20 出版日期: 2021-11-25
CLC:  O 657  
基金资助: 安徽省自然科学基金面上项目(11040606M41);安徽省高校自然科学重点研究项目(KJ2016A683).
作者简介: 姚武(1968—),ORCID: https://orcid.org/0000-0002-3732-2543,男,博士,教授,主要从事药物分析和生物传感器研究,E-mail:yaowu92@sohu.co;
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
姚武
崔朋
胡晓倩

引用本文:

姚武, 崔朋, 胡晓倩. 基于电化学发光和阻抗技术研究DNA单碱基错配[J]. 浙江大学学报(理学版), 2021, 48(6): 711-717.

YAO Wu, CUI Peng, HU Xiaoqian. Study on the single-base mismatch DNA by electrochemiluminescence and impedance biosensor. Journal of Zhejiang University (Science Edition), 2021, 48(6): 711-717.

链接本文:

https://www.zjujournals.com/sci/CN/10.3785/j.issn.1008-9497.2021.06.009        https://www.zjujournals.com/sci/CN/Y2021/V48/I6/711

1 WANG D G, FAN J B, SIAO C J, et al. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome[J]. Science, 1998, 280(5366): 1077-1082. DOI: 10.1126/science.280.5366.1077
2 LAI E. Application of SNP technologies in medicine: Lessons learned and future challenges[J]. Genome Research, 2001, 11: 927-929. DOI:10.1101/gr. 192301
3 CHAKRAVARTI A. Single nucleotide polymorphisms:… to a future of genetic medicine[J]. Nature, 2001, 409(6822): 822-823. DOI:10.1038/35057281
4 LI H L, LUO Y L, SUN X P. Fluorescence resonance energy transfer dye-labeled probe for fluorescence-enhanced DNA detection: An effective strategy to greatly improve discrimination ability toward single-base mismatch[J]. Biosensors and Bioelectronics, 2011, 27(1): 167-171. DOI: 10. 1016/j.bios.2011.06.037
5 HUANG Y X, YANG H Y, AI Y. DNA single-base mismatch study using graphene oxide nanosheets-based fluorometric biosensors[J]. Analytical Chemistry, 2015, 87(18): 9132-9136. DOI: 10. 1021/acs.analchem.5b03037
6 BORGHEI Y S, HOSSEINI M, GANJALI M R, et al. A unique FRET approach toward detection of single-base mismatch DNA in BRCA1 gene[J]. Materials Science and Engineering (C), 2019, 97: 406-411. DOI: 10.1016/j.msec.2018.12.049
7 MAO X, JIANG J H, XU X M, et al. Enzymatic amplification detection of DNA based on “molecular beacon” biosensors[J]. Biosensors and Bioelectronics, 2008, 23(10): 1555-1561. DOI: 10. 1016/j.bios.2008.01.019
8 MORADI N, MOUSAVI M F, MEHRGARDI M A, et al. Preparation of a new electrochemical biosensor for single base mismatch detection in DNA[J]. Analytical Methods, 2013,5(22): 6531-6538. DOI: 10.1039/C3AY40871J
9 CHEN J Y, LIU Z J, WANG X W, et al. Ultrasensitive electrochemical biosensor developed by probe lengthening for detection of genomic DNA in human serum[J]. Analytical Chemistry, 2019, 91(7): 4552-4558. DOI: 10.1021/acs.analchem.8b05692
10 WANG Y, LI C J, LI X H, et al. Unlabeled hairpin-DNA probe for the detection of single-nucleotide mismatches by electrochemical impedance spectroscopy[J]. Analytical Chemistry, 2008, 80(6): 2255-2260. DOI: 10.1021/ac7024688
11 LI C J, LI X H, LIU X H, et al. Exploiting the interaction of metal ions and peptide nucleic acids-DNA duplexes for the detection of a single nucleotide mismatch by electrochemical impedance spectroscopy[J]. Analytical Chemistry, 2010, 82(3): 1166-1169. DOI: 10.1021/ac902813y
12 ITO T, HOSOKAWA K, MAEDA M. Detection of single-base mismatch at distal end of DNA duplex by electrochemical impedance spectroscopy[J]. Biosensors and Bioelectronics, 2007, 22 (8): 1816-1819. DOI: 10.1016/j.bios.2006.08.008
13 ZHANG J, QI H L, LI Y, et al. Electrogenerated chemiluminescence DNA biosensor based on hairpin DNA probe labeled with ruthenium complex[J]. Analytical Chemistry, 2008, 80(8): 2888-2894. DOI: 10.1021/ac701995g
14 YAO W, WANG L, WANG H Y, et al. Electrochemiluminescent sensor for the detection of DNA hybridization using stem-loop structure DNA as capture probes[J]. Microchimica Acta, 2009, 165: 407-413. DOI: 10.1007/s00604-009-0152-4
15 FENG K J, LI J S, JIANG J H, et al. QCM detection of DNA targets with single-base mutation based on DNA ligase reaction and biocatalyzed deposition amplification[J]. Biosensors and Bioelectronics, 2007, 22(8): 1651-1657. DOI: 10. 1016/j.bios.2006.07.023
16 ROSS P, HALL L, SMIMOV I, et al. High level multiplex genotyping by MALDI-TOF mass spectrometry[J]. Nature Biotechnology, 1998, 16(13): 1347-1351. DOI: 10.1038/4328
17 LI Y, SUN S K, YANG J L, et al. Label-free DNA hybridization detection and single base-mismatch discrimination using CE-ICP-MS assay[J]. Analyst, 2011, 136(23): 5038-5045. DOI: 10.1039/c1an15592j
18 RAPISARDA A, GIAMBLANCO N, MARLETTA G. Kinetic discrimination of DNA single-base mutations by localized surface plasmon resonance[J]. Journal of Colloid and Interface Science, 2017, 487: 141-148. DOI: 10.1016/j.jcis. 2016.10.026
19 SONG Y L, ZHANG W T, AN Y, et al. Label-free visual detection of nucleic acids in biological samples with single-base mismatch detection capability[J]. Chemistry Communication, 2012, 48(4): 576-578. DOI: 10.1039/c1cc15777a
20 WU S, LIANG P P, YU H X, et al. Amplified single base-pair mismatch detection via aggregation of exonuclease-sheared gold nanoparticles[J]. Analytical Chemistry, 2014, 86(7): 3461-3467. DOI: 10.1021/ac4040373
21 ZHOU W J, REN J T, ZHU J B, et al. Accurate and visual discrimination of single-base mismatch by utilization of binary DNA probes in gold nanoparticles-based biosensing strategy[J]. Talanta, 2016, 161: 528-534. DOI: 10.1016/j.talanta.2016.09.007
22 YAO W, WANG L, WANG H Y, et al. An electrochemiluminescent DNA sensor based on nano-gold enhancement and ferrocene quenching[J]. Biosensors and Bioelectronics, 2013, 40(1): 356-361. DOI: 10.1016/j.bios.2012.08.002.
23 MIAO W J, BARD A J. Electrogenerated chemiluminescence. 72. determination of immobilized DNA and C-reactive protein on Au(111) electrodes using tris(2,2'-bipyridyl)ruthenium(Ⅱ) labels[J]. Analytical Chemistry, 2003, 75(21): 5825-5834. DOI: 10.1021/ac034596v
24 ABAD-VALLE P, FEMáNDEZ-ABEDUL M T, COSTA-GARCIA A. DNA single-base mismatch study with an electrochemical enzymatic genosensor[J]. Biosensors and Bioelectronics, 2007, 22(8): 1642-1650. DOI: 10.1016/j.bios.2006.07.015
25 LI C X, LI Y X, XU X, et al. Fast and quantitative differentiation of single-base mismatched DNA by initial reaction rate of catalytic hairpin assembly[J]. Biosensors and Bioelectronics, 2014, 60: 57-63. DOI: 10.1016/j.bios.2014.04.007
26 KELLEY S O, BOON M E, BARTON J K, et al. Single-based mismatch detection based on charge transduction through DNA[J]. Nucleic Acids Research, 1999, 27(24): 4830-4837. DOI: 10.1093/nar/27.24.4830
27 TAWA K, KNOLL W. Mismatching base-pair dependence of the kinetics of DNA-DNA hybridization studied by surface plasmon fluorescence spectroscopy[J]. Nucleic Acids Research, 2004, 32(8): 2372-2377. DOI: 10.1093/nar/gkh572
[1] 蔡靖,刘思懿,吴媛媛,郑紫凌,王如意,李强标. 同步脱氮除硫燃料电池的电化学特性研究[J]. 浙江大学学报(理学版), 2022, 49(1): 105-111.
[2] 程 琼 习玲玲 施清照. 再生丝素固定葡萄糖脱氢酶的生物传感器 [J]. 浙江大学学报(理学版), 1998, 25(4): 63-65.