Please wait a minute...
浙江大学学报(理学版)  2021, Vol. 48 Issue (5): 579-583    DOI: 10.3785/j.issn.1008-9497.2021.05.009
化学     
2-碘-3-(对甲苯磺酰氧基)苯基醚的选择性合成
潘峰, 王磊, 郭怡, 沈金滢, 潘晓峰, 郑卫新
杭州师范大学 材料与化学化工学院,浙江 杭州 311121
Selective synthesis of 2-iodophenyl-3-(p-tosyloxy) 4-methylbenzenesulfonate
PAN Feng, WANG Lei, GUO Yi, SHEN Jinying, PAN Xiaofeng, ZHENG Weixin
College of Material, Chemistry & Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
 全文: PDF(1389 KB)   HTML  
摘要: 磺酰氧基卤代芳基醚是一种多功能化合物,在众多研究领域具有广泛应用价值。以2-碘间苯二酚为原料,经化学计量的双磺酰化、选择性单侧水解及与溴化物的亲核取代反应,合成系列2-碘-3-(对甲苯磺酰氧基)苯基醚。结果表明,双磺酰化产物的选择性单侧水解比2-碘间苯二酚通过单烃基化进行原料中2个对称羟基的选择性官能化更有优势。以低成本碱为水解试剂,探索反应时间、温度等因素对2,6-双(对甲苯基磺酰氧基)碘苯单侧选择性水解的影响,水解产物核磁纯度>99%,为对甲苯磺酰氧基碘代芳基醚的合成提供一种操作简便、反应条件温和、成本低和选择性高的方法。所有化合物结构均经1H-NMR、13C-NMR与高分辨质谱等方法确定。
关键词: 磺酰氧基碘代苯基醚合成选择性水解    
Abstract: Halogenated sulfonyloxyaromatic ether has been regarded as the polyfunctionalized organic compound with wide applications in lots of fields. Using 2-iodoresorcinol as the starting material, series of iodonated alkyloxy 4-methylbenzenesulfonate were synthesized in high yields via stoichiometrical bissulfonylation, selective monohydrolysis of 2-iodo-1,3-phenylene bis(4-methylbenzenesulfonate) followed by nucleophilic substitution to various organobromides. Procedure for preparation of 3-hydroxy-2-iodophenyl-(4-methylbenzenesulfonate) was explored. It was found that the monodesulfonylation of bissulfonate was much more favorite than monohydrocarbylation for selective functionalization of the two symmetrical hydoxyls in 2-iodoresorcinol. Using low-cost alkali system, the reaction time, temperature of the monohydrolysis of the 2,6-bis(tosyloxy)iodobenzene had been investigated. The monohydrolysis product, 3-hydroxy-2-iodophenyl-(4-methylbenzenesulfonate), were obtained in the purity of above 99% in 1H-NMR without further purification. This study provides a synthetic method of 3-alkyloxy-2-iodophenyl 4-methylbenzenesulfonate, which had the advantages of simple operation, mild reaction conditions, low cost and high selectivity. The structures of all the products were verified by 1H-NMR, 13C-NMR and HRMS, et al.
Key words: 3-(p-tosyloxy)-2-iodophenyl ether    synthesis    selective monohydrolysis
收稿日期: 2020-01-01 出版日期: 2021-09-15
CLC:  O 627  
基金资助: 国家自然科学基金资助项目(20972037).
通讯作者: ORCID: https://orcid.org/0000-0003-4149-8100,E-mail:wxzheng@hznu.edu.cn.     E-mail: wxzheng@hznu.edu.cn
作者简介: 潘峰(1994—),ORCID: https://orcid.org/0000-0001-7016-2484,男,硕士研究生,主要从事导向金属有机合成研究,E-mail: pfgz0419@163.co;
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
潘峰
王磊
郭怡
沈金滢
潘晓峰
郑卫新

引用本文:

潘峰, 王磊, 郭怡, 沈金滢, 潘晓峰, 郑卫新. 2-碘-3-(对甲苯磺酰氧基)苯基醚的选择性合成[J]. 浙江大学学报(理学版), 2021, 48(5): 579-583.

PAN Feng, WANG Lei, GUO Yi, SHEN Jinying, PAN Xiaofeng, ZHENG Weixin. Selective synthesis of 2-iodophenyl-3-(p-tosyloxy) 4-methylbenzenesulfonate. Journal of Zhejiang University (Science Edition), 2021, 48(5): 579-583.

链接本文:

https://www.zjujournals.com/sci/CN/10.3785/j.issn.1008-9497.2021.05.009        https://www.zjujournals.com/sci/CN/Y2021/V48/I5/579

1 BRAD C, JOHN D F. Polybrominated diphenyl ethers from Dysidea herbacea, Dysidea chlorea and Phyllospongia foliascens[J]. Tetrahedron, 1981, 37(13): 2335-2339. DOI:10.1016/s0040-4020(01)88886-4
2 YAMADA T, TAKIGUCHI H, OHMORI K, et al. Total syntheses of pusilatins A-C, liverwort-derived macrocyclic bisbibenzyl dimers[J]. Organic Letters, 2018, 20(12): 3579-3582. DOI:10.1021/acs.orglett. 8b01366
3 FUJIMOTO J, OKAMOTO R, NOGUCHI N, et al. Discovery of 3,5-diphenyl-4-methyl-1,3-oxazolidin-2-ones as novel, potent, and orally available delta-5 desaturase (D5D) inhibitors[J]. Journal Medicinal Chemistry, 2017, 60(21): 8963-8981. DOI:10.1021/acs.jmedchem.7b01210
4 SINGER J M, WILSON M W, JOHNSON P D, et al. Synthesis and SAR of tolylamine 5-HT6 antagonists[J]. Bioorganic & Medicinal Chemistry Letters, 2009, 19(9): 2409-2412. DOI: 10.1016/j.bmcl.2009.03.077
5 NORTON R S, CROFT K D, WELLS R J. Polybrominated oxydiphenol derivatives from the sponge dysidea herbacea[J]. Tetrahedron, 1981, 37(13): 2341-2349. DOI:10.1016/s0040-4020(01)88887-6
6 MAMIKO N, YOSHIO A, FUMITAKA K, et al. Total synthesis of actinorhodin[J]. Angewandte Chemie International Edition, 2019, 58(13): 4264-4270. DOI:10.1002/anie.201814172
7 BORGEL J, TANWAR L, BERGER F, et al. Late-stage aromatic C-H oxygenation[J]. Journal of the American Chemical Society, 2018, 140(47): 16026-16031. doi:10.1021/jacs.8b09208
8 ARIYASU S, SAWA A, MORITA A, et al. Design and synthesis of 8-hydroxyquinoline-based radioprotective agents[J]. Bioorganic & Medicinal Chemistry, 2014, 22(15): 3891-905. DOI:10. 1016/j.bmc.2014.06.017
9 BORGEL J, TANWAR L, BERGER F, et al. Late-stage aromatic C-H oxygenation[J]. Journal of the American Chemical Society, 2018, 140(47): 16026-16031. doi:10.1021/jacs.8b09208
10 NING Y, FUKUDA T, IKEDA H, et al. Revisiting secondary interactions in neighboring group participation, exemplified by reactivity changes of iminylium intermediates[J]. Organic Biomolecular Chemistry, 2017, 15(6): 1381-1392. DOI:10.1039/c6ob02719a
11 LIU Z, LI J, LI S, et al. SuFEx click chemistry enabled late-stage drug functionalization[J]. Journal of the American Chemical Society, 2018, 140(8): 2919-2925. DOI:10.1021/jacs.7b12788
12 IQBAL J, EL-GAMAL M I, EJAZ S A, et al, Tricyclic coumarin sulphonate derivatives with alkaline phosphatase inhibitory effects: In vitro and docking studies[J]. Journal of Enzyme Inhibition and Medicinal Chemistry, 2018, 33(1): 479-484. DOI:10.1080/14756366.2018.1428193
13 TRAN H, MCCALLUM T, MORIN M, et al. Homocoupling of iodoarenes and bromoalkanes using photoredox gold catalysis: A light enabled Au(III) reductive elimination[J]. Organic Letters, 2016, 18(17): 4308-4311. DOI:10.1021/acs.orglett.6b02021
14 MONDAL S, DEBNATH S, DAS B. Synthesis of seven-membered fused sultones by reductive Heck cyclization: An investigation for stereochemistry through DFT study[J]. Tetrahedron, 2015, 71(3): 476-486. DOI:10.1016/j.tet.2014.11.068
15 ALLEN P, BRAGG R A, CAFFREY M, et al. The synthesis of a tritium, carbon-14, and stable isotope-labeled cathepsin C inhibitors[J]. Journal of Labelled Compounds & Radiopharmaceuticals, 2017, 60(2): 124-129. DOI:10.1002/jlcr.3483
16 STEINHARDT R C, O'NEILL J M, RATHBUN C M, et al. Design and synthesis of an alkynyl luciferin analogue for bioluminescence imaging[J]. European Journal of Organic Chemistry, 2016, 22(11): 3671-3675. DOI: 10.1002/chem.201503944
17 LIN K, WILES R J, KELLY C B, et al. Haloselective cross-coupling via Ni/Photoredox dual catalysis[J]. ACS Catalysis, 2017, 7(8): 5129-5133. DOI: 10.1021/acscatal.7b01773
18 JOSÉ A, GARCÍA L, MELIHA Ç, et al. Synthesis of hindered biaryls via aryne addition and in situ dimerization[J]. Organic Letters, 2015, 17(11): 2649-2651. DOI: 10.1021/acs.orglett.5b01115
19 WANG Z, LIU Z, LEE W, et al. Design, synthesis and docking study of 5-(substituted benzylidene) thiazolidine-2,4-dione derivatives as inhibitors of protein tyrosine phosphatase 1B[J]. Bioorganic & Medicinal Chemistry Letters, 2014, 24(15): 3337-3340. DOI:10.1016/j.bmcl.2014.05.099
20 TAKAHASHI S, SUDA Y, NAKAMURA T, et al. Total synthesis of kehokorins A-E, cytotoxic p-terphenyls[J]. The Journal of Organic Chemistry, 2017, 82(6): 3159-3166. DOI:10.1021/acs.joc. 7b00147
21 BRACCA A, KAUFMAN T, CORTÉS I, et al. Total synthesis and cytotoxic activity of 6,8-dimethoxy-1,3-dimethylisoquinoline isolated from ancistrocladus tectorius: A 6π-azaelectro-cyclization approach[J]. Synthesis, 2018, 51(2): 433-440. DOI:10.1055/s-0037-1610276
22 ATTALURI S, IDEN C R, BONALA R R, et al. Total synthesis of the aristolochic acids, their major metabolites, and related compounds[J]. Chemical Research in Toxicology, 2014, 27(7): 1236-1242. DOI: 10.1021/tx500122x
23 YOSHIDA S, MORITA T, HOSOYA T. Synthesis of diverse benzotriazoles from aryne precursors bearing an azido group via inter- and intramolecular cycloadditions[J]. Chemistry Letters, 2016, 45(7): 726-728. DOI:10.1246/cl.160349
24 NERVIG C S, WALLER P J, KALYANI D. Palladium-catalyzed intramolecular C-H arylation of arenes using tosylates and mesylates as electrophiles[J]. Organic Letters, 2012, 14(18): 4838-4841. DOI:10.1021/ol302166n
25 ALI R, GUAN Y, LEVEILLE A N, et al. Synthesis and anticancer activity of structure simplified naturally inspired dimeric chromenone derivatives[J]. European Journal of Organic Chemistry, 2019, 10(41): 6917-6929. doi:10.1002/ejoc.201901026
26 CLARK C G, FLOUDAS G A, LEE Y J, et al.Molecularly tethered amphiphiles as 3-D supramolecular assembly platforms: Unlocking a trapped conformation[J]. Journal of American Chemical Society, 2009, 131(24): 8537-8547. DOI:10.1021/ja900999f
27 TSUJIYAMA S I, SUZUKI K. Preparation of benzocyclobutenone derivatives based on an efficient generation of benzynes[J] Organic Syntheses, 2007, 84: 272-284. DOI:10.15227/orgsyn.084.0272
[1] 裘佳萍, 杜培臻, 雷鸣, 田梅, 方群, 张宏, 徐光明, 潘建章. 微型模块化微流控PET显像剂合成仪的研制及应用[J]. 浙江大学学报(理学版), 2021, 48(5): 573-578.
[2] 沈杭锋, 崔洁, 刘敏, 方桃妮, 陈光宇. 福建登陆北上台风对杭州影响的对比分析[J]. 浙江大学学报(理学版), 2020, 47(5): 582-593.
[3] 高百俊, 张佳, 朱振扬. M-可补子群对合成因子的影响[J]. 浙江大学学报(理学版), 2019, 46(5): 526-528.
[4] 李佳慧, 杨芳芳, 王珍, 张赛南, 王首锋. 新型双功能谷胱甘肽合成酶的真核和原核表达[J]. 浙江大学学报(理学版), 2019, 46(4): 474-481.
[5] 江银枝, 程本能, 孙红英, 时永强. Salen双核Cu2+配合物的合成及催化染料降解[J]. 浙江大学学报(理学版), 2016, 43(6): 733-739.
[6] 桂彦, 王培玉, 李峰, 刘杨. 基于GPU加速的几何纹理合成方法[J]. 浙江大学学报(理学版), 2016, 43(6): 638-646.
[7] 屠美玲, 俞卫平, 冯涛, 贾继宁, 张云, 张建庭. A2A腺苷受体拮抗剂中间体与抗结剂合成方法研究[J]. 浙江大学学报(理学版), 2016, 43(4): 420-425.
[8] 汪冒君, 宣南霞, 吴 军. 乙酰乳酸合成酶与抑制剂ZJ0777及CIE的分子对接和分子动力学模拟[J]. 浙江大学学报(理学版), 2015, 42(6): 709-713.
[9] 黄志真,黄 宪. 钯催化芳卤与亚磷酸二烷酯的相转移偶联反应[J]. 浙江大学学报(理学版), 1998, 25(3): 59-61.
[10] 梅明华,楼 辉. 中孔分子筛MCM-41 的合成与表征[J]. 浙江大学学报(理学版), 1998, 25(2): 62-65.
[11] 林秋月;龚枉秋. 三元混配合物中的芳环堆积作用研究‘N . Zn2十一Phen-PCA体系的萃取研究和混配合物的合成及表征[J]. 浙江大学学报(理学版), 1997, 24(3): 234-238.
[12] 龚钮秋;沈良. 把与苯基梭酸和1,2一二(二苯膦)乙烷混配合物的合成与表征[J]. 浙江大学学报(理学版), 1996, 23(2): 177-181.